26 research outputs found

    Supported Lipid Bilayers of Escherichia coli Extracted Lipids and Their Calcium Dependence

    Get PDF
    Formation of supported lipid bilayer (SLB) and additional structures of Escherichia coli (E. coli) lipids were investigated with fluorescence microscopy and atomic force microscopy. Ca2+ in the aqueous phase with concentration above 2 mM was necessary for the formation of SLB. Additional lipid structures, string-like structures, the second lipid bilayer, and multilayer stacking appeared on the first layer SLB depending on Ca2+ concentration. The bridging effect of Ca2+ between the negatively charged E. coli lipid bilayers and substrate is the dominant factor determining the two-dimensional and three-dimensional morphology of the E. coli lipid bilayer membranes

    Corrigendum: Use of the index of pulmonary vascular disease for predicting longterm outcome of pulmonary arterial hypertension associated with congenital heart disease

    Get PDF

    Use of the index of pulmonary vascular disease for predicting long-term outcome of pulmonary arterial hypertension associated with congenital heart disease

    Get PDF
    AimsLimited data exist on risk factors for the long-term outcome of pulmonary arterial hypertension (PAH) associated with congenital heart disease (CHD-PAH). We focused on the index of pulmonary vascular disease (IPVD), an assessment system for pulmonary artery pathology specimens. The IPVD classifies pulmonary vascular lesions into four categories based on severity: (1) no intimal thickening, (2) cellular thickening of the intima, (3) fibrous thickening of the intima, and (4) destruction of the tunica media, with the overall grade expressed as an additive mean of these scores. This study aimed to investigate the relationship between IPVD and the long-term outcome of CHD-PAH.MethodsThis retrospective study examined lung pathology images of 764 patients with CHD-PAH aged <20 years whose lung specimens were submitted to the Japanese Research Institute of Pulmonary Vasculature for pulmonary pathological review between 2001 and 2020. Clinical information was collected retrospectively by each attending physician. The primary endpoint was cardiovascular death.ResultsThe 5-year, 10-year, 15-year, and 20-year cardiovascular death-free survival rates for all patients were 92.0%, 90.4%, 87.3%, and 86.1%, respectively. The group with an IPVD of ≥2.0 had significantly poorer survival than the group with an IPVD <2.0 (P = .037). The Cox proportional hazards model adjusted for the presence of congenital anomaly syndromes associated with pulmonary hypertension, and age at lung biopsy showed similar results (hazard ratio 4.46; 95% confidence interval: 1.45–13.73; P = .009).ConclusionsThe IPVD scoring system is useful for predicting the long-term outcome of CHD-PAH. For patients with an IPVD of ≥2.0, treatment strategies, including choosing palliative procedures such as pulmonary artery banding to restrict pulmonary blood flow and postponement of intracardiac repair, should be more carefully considered

    A descriptive study of solitary death in Yokohama City

    No full text
    Abstract Background The solitary death rate in Japan is expected to continue increasing because of its growing super-aged society and the rapid growth of home care in the country. To accurately determine the actual status of solitary deaths, we used a novel analysis method of combining vital statistics and ambulatory care information in Yokohama City. Methods Data of persons who died at home in 2013 were obtained from death certificate notifications. We also obtained the emergency transportation records that matched the cases of these death certificate notifications. Then, we gathered information regarding age, gender, marital status, and cause of death for the matched cases. Results There were 1890 “suspected unnatural deaths,” in which most solitary deaths could be included, among all citizens who died at home (n = 4847). We were able to match 1503 of these cases with emergency transportation records. These 1503 cases were divided into two groups, “solitary death” (n = 349) and “un-solitary death” (n = 1154) according to the postmortem interval until finding (PMI-f). Pearson’s χ 2 tests conducted for the two groups revealed that there were significant differences regarding the proportion of persons who were elderly, unmarried, male, and had a hepatic disease and senility. A logistic regression analysis also showed that an increased likelihood of a prolonged PMI-f was associated with males and an unmarried status with hepatic diseases. Conclusions Unmarried, male sex, and liver diseases are independent risks for solitary death in Yokohama City

    Effect of Phosphorus-Doping on Electrochemical Performance of Silicon Negative Electrodes in Lithium-Ion Batteries

    No full text
    The effect of phosphorus (P)-doping on the electrochemical performance of Si negative electrodes in lithium-ion batteries was investigated. Field-emission scanning electron microscopy was used to observe changes in surface morphology. Surface crystallinity and the phase transition of Si negative electrodes before and after a charge–discharge cycle were investigated by Raman spectroscopy and X-ray diffraction. Li insertion energy into Si was also calculated based on computational chemistry. The results showed that a low P concentration of 124 ppm has a meaningful influence on the electrochemical properties of a Si negative electrode; the cycle performance is improved by P-doping of Si. P-doping suppresses the changes in the surface morphology of a Si negative electrode and the phase transition during a charge–discharge cycle. Li insertion energy increases with an increase in the P concentration; Li insertion into P-doped Si is energetically unfavorable, which indicates that the crystal lattice of Si shrinks as a result of the replacement of some Si atoms with smaller P atoms, and therefore, it is more difficult to insert Li into P-doped Si. These results reveal that suppression of the phase transition reduces the large change in the volume of Si and prevents a Si negative electrode from disintegrating, which helps to improve the otherwise poor cycle performance of a Si electrode

    Morphology and Physical Properties of Hydrophilic-Polymer-Modified Lipids in Supported Lipid Bilayers

    No full text
    Lipid molecules such as glycolipids that are modified with hydrophilic biopolymers participate in the biochemical reactions occurring on cell membranes. Their functions and efficiency are determined by the formation of microdomains and their physical properties. We investigated the morphology and properties of domains induced by the hydrophilic-polymer-modified lipid applying a polyethylene glycol (PEG)-modified lipid as a model modified lipid. We formed supported lipid bilayers (SLBs) using a 0–10 mol % range of PEG-modified lipid concentration (<i>C</i><sub>PEG</sub>). We studied their morphology and fluidity by fluorescence microscopy, the fluorescence recovery after photobleaching method, and atomic force microscopy (AFM). Fluorescence images showed that domains rich in the PEG-modified lipid appeared and SLB fluidity decreased when <i>C</i><sub>PEG</sub> ≥ 5%. AFM topographies showed that clusters of the PEG-modified lipid appeared prior to domain formation and the PEG-lipid-rich domains were observed as depressions. Frequency-modulation AFM revealed a force-dependent appearance of the PEG-lipid-rich domain

    Crucible-Free Growth of Bulk b-Ga<sub>2</sub>O<sub>3</sub> Single-Crystal Scintillator under Oxidizing Atmosphere

    No full text
    β-Ga2O3 is a well-known semiconductor material for power devices and other applications. Recently, β-Ga2O3 has also been reported as a scintillator material with a light yield of approximately 8400 ph./MeV, scintillation decay time of 3. In this study, 45 cm diameter β-Ga2O3 single crystals were prepared via oxide crystal growth using the cold crucible (OCCC) method under various oxygen partial pressures. In the OCCC method, as in the cold crucible method, a high frequency is applied directly to the oxide materials, which are heated and melted, and the melt is held by the outermost solid material itself that is cooled by water using a copper hearth. In the OCCC method, crystal growth is performed while rotating the seed crystal, as in the Czochralski method, to increase the crystal diameter. The optical properties and radiation responses of the crystals grown under various oxygen partial pressures were evaluated
    corecore