93 research outputs found

    A Dipeptidyl Peptidase-4 Inhibitor, Des-Fluoro-Sitagliptin, Improves Endothelial Function and Reduces Atherosclerotic Lesion Formation in Apolipoprotein E–Deficient Mice

    Get PDF
    ObjectivesThe aim of this study was to investigate the antiatherogenic effects of the dipeptidyl peptidase-4 inhibitor, des-fluoro-sitagliptin (DFS).BackgroundThe new class of anti–type 2 diabetes drugs, dipeptidyl peptidase-4 inhibitors, improves glucose metabolism by increasing levels of active glucagon-like peptide (GLP)-1.MethodsEndothelial function was examined by acetylcholine-induced endothelium-dependent vasorelaxation using aortic rings and atherosclerotic lesion development in the entire aorta in apolipoprotein E–deficient mice fed a high-fat diet with or without DFS, and the antiatherogenic effects of DFS were investigated in cultured human macrophages and endothelial cells. Plasma levels of active GLP-1 were measured in patients with or without coronary artery disease.ResultsDFS significantly improved endothelial dysfunction (89.9 ± 3.9% vs. 79.2 ± 4.3% relaxation at 10−4 mol/l acetylcholine, p < 0.05) associated with increased endothelial nitric oxide synthase phosphorylation and reduced atherosclerotic lesion area (17.7% [15.6% to 25.8%] vs. 24.6% [19.3% to 34.6%], p < 0.01) compared with vehicle treatment. In cultured human macrophages, DFS significantly increased GLP-1-induced cytosolic levels of cyclic adenosine monophosphate compared with GLP-1 alone, resulted in inhibiting phosphorylation of c-jun N-terminal kinase and extracellular signal-regulated kinase 1/2 and nuclear factor-kappa B p65 nuclear translocation through the cyclic adenosine monophosphate/protein kinase A pathway, and suppressed proinflammatory cytokines (i.e., interleukin-1-beta, interleukin-6, and tumor necrosis factor-alpha) and monocyte chemoattractant protein-1 production in response to lipopolysaccharide. DFS-enhanced GLP-1 activity sustained endothelial nitric oxide synthase phosphorylation and decreased endothelial senescence and apoptosis compared with GLP-1 alone. In the human study, fasting levels of active GLP-1 were significantly lower in patients with coronary artery disease than those without (3.10 pmol/l [2.40 to 3.62 pmol/l] vs. 4.00 pmol/l [3.10 to 5.90 pmol/l], p < 0.001).ConclusionsA DPP-4 inhibitor, DFS, exhibited antiatherogenic effects through augmenting GLP-1 activity in macrophages and endothelium

    Impact of cystatin C-derived glomerular filtration rate in patients undergoing transcatheter aortic valve implantation

    Get PDF
    BackgroundChronic kidney disease (CKD) impacts prognosis in patients undergoing transcatheter aortic valve implantation (TAVI). While estimated glomerular filtration rate (eGFR) calculated from serum creatinine [eGFR (creatinine)] is affected by body muscle mass which reflects frailty, eGFR calculated from serum cystatin C [eGFR (cystatin C)] is independent of body composition, resulting in better renal function assessment.MethodsThis study included 390 consecutive patients with symptomatic severe aortic stenosis (AS) who underwent TAVI, and measured cystatin C-based eGFR at discharge. Patients were divided into two groups, with or without CKD estimated with eGFR (cystatin C). The primary endpoint of this study was the 3-year all-cause mortality after TAVI.ResultsThe median patient age was 84 years, and 32.8% patients were men. Multivariate Cox regression analysis indicated that eGFR (cystatin C), diabetes mellitus, and liver disease were independently associated with 3-year all-cause mortality. In the receiver-operating characteristic (ROC) curve, the predictive value of eGFR (cystatin C) was significantly higher than that of eGFR (creatinine). Furthermore, Kaplan–Meier estimates revealed that 3-year all-cause mortality was higher in the CKD (cystatin C) group than that in the non-CKD (cystatin C) group with log-rank p = 0.009. In contrast, there was no significant difference between the CKD (creatinine) and non-CKD (creatinine) groups with log-rank p = 0.94.ConclusionseGFR (cystatin C) was associated with 3-year all-cause mortality in patients who underwent TAVI, and it was superior to eGFR (creatinine) as a prognostic biomarker

    Quantification of pulmonary perfusion using LSIM-CT correlates with pulmonary hemodynamics in patients with CTEPD

    Get PDF
    BackgroundLung subtraction iodine mapping (LSIM)-CT is a clinically useful technique that can visualize pulmonary mal-perfusion in patients with chronic thromboembolic pulmonary disease (CTEPD). However, little is known about the associations of LSIM images with hemodynamic parameters of patients with CTEPD. This study investigates a parameter of LSIM images associated with mean pulmonary arterial pressure (mPAP) and validates the association between pulmonary vascular resistance, right atrial pressure, cardiac index, and exercise capacity in patients with CTEPD.MethodsThis single-center, prospective, observational study involved 30 patients diagnosed with CTEPD using lung perfusion scintigraphy. To examine the correlation of decreased pulmonary perfusion area (DPA) with mPAP, areas with 0–10, 0–15, 0–20, and 0–30 HU in lung subtraction images were adopted in statistical analysis. The DPA to total lung volume ratio (DPA ratio, %) was calculated as the ratio of each DPA volume to the total lung volume. To assess the correlation between DPA ratios of 0–10, 0–15, 0–20, and 0–30 HU and mPAP, Spearman's rank correlation coefficient was used.ResultsThe DPA ratio of 0–10 HU had the most preferable correlation with mPAP than DPA ratios of 0–15, 0–20, and 0–30 HU (ρ = 0.440, P = 0.015). The DPA ratio of 0–10 HU significantly correlates with pulmonary vascular resistance (ρ = 0.445, P = 0.015). The receiver operating characteristic curve analysis indicated that the best cutoff value of the DPA ratio of 0–10 HU for the prediction of an mPAP of ≥30 mmHg was 8.5% (AUC, 0.773; 95% CI, 0.572–0.974; sensitivity, 83.3%; specificity, 75.0%). Multivariate linear regression analysis, which was adjusted for the main pulmonary arterial to ascending aortic diameter ratio and right ventricular to left ventricular diameter ratio, indicated that the DPA ratio of 0–10 HU was independently and significantly associated with mPAP (B = 89.7; 95% CI, 46.3–133.1, P &lt; 0.001).ConclusionThe DPA ratio calculated using LSIM-CT is possibly useful for estimating the hemodynamic status in patients with CTEPD

    Endothelial Cells Regulate Physiological Cardiomyocyte Growth via VEGFR2-Mediated Paracrine Signaling

    Get PDF
    Background: Heart failure, which is a major global health problem, is often preceded by pathological cardiac hypertrophy. The expansion of the cardiac vasculature, to maintain adequate supply of oxygen and nutrients, is a key determinant of whether the heart grows in a physiological compensated manner or a pathological decompensated manner. Bidirectional endothelial cell (EC)-cardiomyocyte (CMC) cross talk via cardiokine and angiocrine signaling plays an essential role in the regulation of cardiac growth and homeostasis. Currently, the mechanisms involved in the EC-CMC interaction are not fully understood, and very little is known about the EC-derived signals involved. Understanding how an excess of angiogenesis induces cardiac hypertrophy and how ECs regulate CMC homeostasis could provide novel therapeutic targets for heart failure. Methods: Genetic mouse models were used to delete vascular endothelial growth factor (VEGF) receptors, adeno-associated viral vectors to transduce the myocardium, and pharmacological inhibitors to block VEGF and ErbB signaling in vivo. Cell culture experiments were used for mechanistic studies, and quantitative polymerase chain reaction, microarrays, ELISA, and immunohistochemistry were used to analyze the cardiac phenotypes. Results: Both EC deletion of VEGF receptor (VEGFR)-1 and adeno-associated viral vector-mediated delivery of the VEGFR1-specific ligands VEGF-B or placental growth factor into the myocardium increased the coronary vasculature and induced CMC hypertrophy in adult mice. The resulting cardiac hypertrophy was physiological, as indicated by preserved cardiac function and exercise capacity and lack of pathological gene activation. These changes were mediated by increased VEGF signaling via endothelial VEGFR2, because the effects of VEGF-B and placental growth factor on both angiogenesis and CMC growth were fully inhibited by treatment with antibodies blocking VEGFR2 or by endothelial deletion of VEGFR2. To identify activated pathways downstream of VEGFR2, whole-genome transcriptomics and secretome analyses were performed, and the Notch and ErbB pathways were shown to be involved in transducing signals for EC-CMC cross talk in response to angiogenesis. Pharmacological or genetic blocking of ErbB signaling also inhibited part of the VEGF-B-induced effects in the heart. Conclusions: This study reveals that cross talk between the EC VEGFR2 and CMC ErbB signaling pathways coordinates CMC hypertrophy with angiogenesis, contributing to physiological cardiac growth.Peer reviewe

    Grip strength predicts cardiac adverse events in patients with cardiac disorders: an individual patient pooled meta-analysis

    Get PDF
    Objective: Grip strength is a well-characterised measure of weakness and of poor muscle performance, but there is a lack of consensus on its prognostic implications in terms of cardiac adverse events in patients with cardiac disorders. Methods: Articles were searched in PubMed, Cochrane Library, BioMed Central and EMBASE. The main inclusion criteria were patients with cardiac disorders (ischaemic heart disease, heart failure (HF), cardiomyopathies, valvulopathies, arrhythmias); evaluation of grip strength by handheld dynamometer; and relation between grip strength and outcomes. The endpoints of the study were cardiac death, all-cause mortality, hospital admission for HF, cerebrovascular accident (CVA) and myocardial infarction (MI). Data of interest were retrieved from the articles and after contact with authors, and then pooled in an individual patient meta-analysis. Univariate and multivariate logistic regression was performed to define predictors of outcomes. Results: Overall, 23 480 patients were included from 7 studies. The mean age was 62.3±6.9 years and 70% were male. The mean follow-up was 2.82±1.7 years. After multivariate analysis grip strength (difference of 5 kg, 5× kg) emerged as an independent predictor of cardiac death (OR 0.84, 95% CI 0.79 to 0.89, p&lt;0.0001), all-cause death (OR 0.87, 95% CI 0.85 to 0.89, p&lt;0.0001) and hospital admission for HF (OR 0.88, 95% CI 0.84 to 0.92, p&lt;0.0001). On the contrary, we did not find any relationship between grip strength and occurrence of MI or CVA. Conclusion: In patients with cardiac disorders, grip strength predicted cardiac death, all-cause death and hospital admission for HF. Trial registration number: CRD42015025280

    出生児低体重モデルにおける、冠循環形態の変容

    Get PDF
    第3回日本DOHaD研究会学術集会 抄録集 【ポスター発表
    corecore