29 research outputs found

    Genetic knockout and pharmacologic inhibition of neuronal nitric oxide synthase attenuate nerve injury-induced mechanical hypersensitivity in mice

    Get PDF
    Neuronal nitric oxide synthase (nNOS) is a key enzyme for nitric oxide production in neuronal tissues and contributes to the spinal central sensitization in inflammatory pain. However, the role of nNOS in neuropathic pain remains unclear. The present study combined a genetic strategy with a pharmacologic approach to examine the effects of genetic knockout and pharmacologic inhibition of nNOS on neuropathic pain induced by unilateral fifth lumbar spinal nerve injury in mice. In contrast to wildtype mice, nNOS knockout mice failed to display nerve injury-induced mechanical hypersensitivity. Furthermore, either intraperitoneal (100 mg/kg) or intrathecal (30 μg/5 μl) administration of L-NG-nitro-arginine methyl ester, a nonspecific NOS inhibitor, significantly reversed nerve injury-induced mechanical hypersensitivity on day 7 post-nerve injury in wildtype mice. Intrathecal injection of 7-nitroindazole (8.15 μg/5 μl), a selective nNOS inhibitor, also dramatically attenuated nerve injury-induced mechanical hypersensitivity. Western blot analysis showed that the expression of nNOS protein was significantly increased in ipsilateral L5 dorsal root ganglion but not in ipsilateral L5 lumbar spinal cord on day 7 post-nerve injury. The expression of inducible NOS and endothelial NOS proteins was not markedly altered after nerve injury in either the dorsal root ganglion or spinal cord. Our findings suggest that nNOS, especially in the dorsal root ganglion, may participate in the development and/or maintenance of mechanical hypersensitivity after nerve injury

    Distinct expression of synaptic NR2A and NR2B in the central nervous system and impaired morphine tolerance and physical dependence in mice deficient in postsynaptic density-93 protein

    Get PDF
    Postsynaptic density (PSD)-93, a neuronal scaffolding protein, binds to and clusters N-methyl-D-aspartate receptor (NMDAR) subunits NR2A and NR2B at cellular membranes in vitro. However, the roles of PSD-93 in synaptic NR2A and NR2B targeting in the central nervous system and NMDAR-dependent physiologic and pathologic processes are still unclear. We report here that PSD-93 deficiency significantly decreased the amount of NR2A and NR2B in the synaptosomal membrane fractions derived from spinal cord dorsal horn and forebrain cortex but did not change their levels in the total soluble fraction from either region. However, PSD-93 deficiency did not markedly change the amounts of NR2A and NR2B in either synaptosomal or total soluble fractions from cerebellum. In mice deficient in PSD-93, morphine dose-dependent curve failed to shift significantly rightward as it did in wild type (WT) mice after acute and chronic morphine challenge. Unlike WT mice, PSD-93 knockout mice also showed marked losses of NMDAR-dependent morphine analgesic tolerance and associated abnormal sensitivity in response to mechanical, noxious thermal, and formalin-induced inflammatory stimuli after repeated morphine injection. In addition, PSD-93 knockout mice displayed dramatic loss of jumping activity, a typical NMDAR-mediated morphine withdrawal abstinence behavior. These findings indicate that impaired NMDAR-dependent neuronal plasticity following repeated morphine injection in PSD-93 knockout mice is attributed to PSD-93 deletion-induced alterations of synaptic NR2A and NR2B expression in dorsal horn and forebrain cortex neurons. The selective effect of PSD-93 deletion on synaptic NMDAR expression in these two major pain-related regions might provide the better strategies for the prevention and treatment of opioid tolerance and physical dependence

    Preserved acute pain and impaired neuropathic pain in mice lacking protein interacting with C Kinase 1

    Get PDF
    Protein interacting with C Kinase 1 (PICK1), a PDZ domain-containing scaffolding protein, interacts with multiple different proteins in the mammalian nervous system and is believed to play important roles in diverse physiological and pathological conditions. In this study, we report that PICK1 is expressed in neurons of the dorsal root ganglion (DRG) and spinal cord dorsal horn, two major pain-related regions. PICK1 was present in approximately 29.7% of DRG neurons, most of which were small-less than 750 μm2 in cross-sectional area. Some of these PICK1-positive cells co-labeled with isolectin B4 or calcitonin-gene-related peptide. In the dorsal horn, PICK1 immunoreactivity was concentrated in the superficial dorsal horn, where it was prominent in the postsynaptic density, axons, and dendrites. Targeted disruption of PICK1 gene did not affect basal paw withdrawal responses to acute noxious thermal and mechanical stimuli or locomotor reflex activity, but it completely blocked the induction of peripheral nerve injury-induced mechanical and thermal pain hypersensitivities. PICK1 appears to be required for peripheral nerve injury-induced neuropathic pain development and to be a potential biochemical target for treating this disorder

    Role of spinal cord alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors in complete Freund's adjuvant-induced inflammatory pain

    Get PDF
    Spinal cord α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) mediate acute spinal processing of nociceptive and non-nociceptive information, but whether and how their activation contributes to the central sensitization that underlies persistent inflammatory pain are still unclear. Here, we examined the role of spinal AMPARs in the development and maintenance of complete Freund's adjuvant (CFA)-induced persistent inflammatory pain. Intrathecal application of two selective non-competitive AMPAR antagonists, CFM-2 (25 and 50 μg) and GYKI 52466 (50 μg), significantly attenuated mechanical and thermal hypersensitivities on the ipsilateral hind paw at 2 and 24 h post-CFA injection. Neither CFM-2 nor GYKI 52466 affected the contralateral basal responses to thermal and mechanical stimuli. Locomotor activity was not altered in any of the drug-treated animals. CFA-induced inflammation did not change total expression or distribution of AMPAR subunits GluR1 and GluR2 in dorsal horn but did alter their subcellular distribution. The amount of GluR2 was markedly increased in the crude cytosolic fraction and decreased in the crude membrane fraction from the ipsilateral L4–5 dorsal horn at 24 h (but not at 2 h) post-CFA injection. Conversely, the level of GluR1 was significantly decreased in the crude cytosolic fraction and increased in the crude membrane fraction from the ipsilateral L4–5 dorsal horn at 24 h (but not at 2 h) post-CFA injection. These findings suggest that spinal AMPARs might participate in the central spinal mechanism of persistent inflammatory pain

    Pharmacokinetics and pharmacodynamics of fenoldopam mesylate for blood pressure control in pediatric patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Fenoldopam mesylate, a selective dopamine1-receptor agonist, is used by intravenous infusion to treat hypertension in adults. Fenoldopam is not approved by the FDA for use in children; reports describing its use in pediatrics are limited. In a multi-institutional, placebo controlled, double-blind, multi-dose trial we determined the pharmacokinetic (PK) and pharmacodynamic (PD) characteristics and side-effect profile of fenoldopam in children.</p> <p>Methods</p> <p>Seventy seven (77) children from 3 weeks to 12 years of age scheduled for surgery in which deliberate hypotension would be induced were enrolled. Patients were randomly assigned to one of five, blinded treatment groups (placebo or fenoldopam 0.05, 0.2, 0.8, or 3.2 mcg/kg/min iv) for a 30-minute interval after stabilization of anesthesia and placement of vascular catheters. Following the 30-minute blinded interval, investigators adjusted the fenoldopam dose to achieve a target mean arterial pressure in the open-label period until deliberate hypotension was no longer indicated (e.g., muscle-layer closure). Mean arterial pressure and heart rate were continuously monitored and were the primary endpoints.</p> <p>Results</p> <p>Seventy-six children completed the trial. Fenoldopam at doses of 0.8 and 3.2 mcg/kg/min significantly reduced blood pressure (p < 0.05) during the blinded interval, and doses of 1.0–1.2 mcg/kg/min resulted in continued control of blood pressure during the open-label interval. Doses greater than 1.2 mcg/kg/min during the open-label period resulted in increasing heart rate without additional reduction in blood pressure. Fenoldopam was well-tolerated; side effects occurred in a minority of patients. The PK/PD relationship of fenoldopam in children was determined.</p> <p>Conclusion</p> <p>Fenoldopam is a rapid-acting, effective agent for intravenous control of blood pressure in children. The effective dose range is significantly higher in children undergoing anesthesia and surgery (0.8–1.2 mcg/kg/min) than as labeled for adults (0.05–0.3 mcg/kg/min). The PK and side-effect profiles for children and adults are similar.</p

    The Night After Surgery: Postoperative Management of the Pediatric Outpatient—Surgical and Anesthetic Aspects

    No full text
    Outpatient or “ambulatory” anesthesia and surgery has revolutionized the way surgery is practiced in the United States. Safe, reliable, inexpensive, and convenient outpatient surgery is an attractive option for parents, children, health care providers, and insurers

    Effect of targeted disruption of the nNOS gene on nerve injury-induced neuropathic pain

    No full text
    <p><b>Copyright information:</b></p><p>Taken from "Genetic knockout and pharmacologic inhibition of neuronal nitric oxide synthase attenuate nerve injury-induced mechanical hypersensitivity in mice"</p><p>http://www.molecularpain.com/content/3/1/29</p><p>Molecular Pain 2007;3():29-29.</p><p>Published online 8 Oct 2007</p><p>PMCID:PMC2089056.</p><p></p> Lspinal nerve injury produced a significant increase in paw withdrawal frequencies in response to 0.24 mN (low intensity) (A) and 4.33 mN (moderate intensity) (B) mechanical stimuli on the ipsilateral (ipsi) side in wildtype (WT) mice. The nNOS knockout (KO) mice displayed impaired mechanical pain hypersensitivity on the ipsilateral side (A, B). No significant changes in paw withdrawal frequencies were seen on the contralateral (contral) side after Lspinal nerve injury in either WT or nNOS KO mice. **< 0.01 corresponding time points in the WT mice

    Expression of nNOS, eNOS, and iNOS in the ipsilateral (I) and contralateral (C) Ldorsal root ganglia in naïve WT mice and WT mice 7 days after sham surgery or Lspinal nerve injury

    No full text
    <p><b>Copyright information:</b></p><p>Taken from "Genetic knockout and pharmacologic inhibition of neuronal nitric oxide synthase attenuate nerve injury-induced mechanical hypersensitivity in mice"</p><p>http://www.molecularpain.com/content/3/1/29</p><p>Molecular Pain 2007;3():29-29.</p><p>Published online 8 Oct 2007</p><p>PMCID:PMC2089056.</p><p></p> (A) Representative examples of Western blots. β-actin was used as a loading control. (B-D) Statistical summary of the densitometric analysis expressed relative to the contralateral side in naïve mice. *< 0.05 the corresponding side in naïve mice or the sham-operated group
    corecore