2 research outputs found

    Ritalin abuse and its complications

    Get PDF
    Ritalin is a methylphenidate and a stimulant of the nervous system. Its Pharmacological effects are similar to amphetamines. Ritalin is used in hyperactive children and in some cases of brain trauma usually in the form of tablets. It has been the most effective and common drug for treatment of attention-deficit hyperactivity disorder (ADHD) for years. Ritalin has a high potential for abuse, particularly in some students use it to increase focus in order to success in exams. Use of high-dose Ritalin via intravenous and inhalation or intranasal administration can cause many complications similar to cocaine and amphetamine. These complications include violent behavior, hallucinations, hyperexcitability, irritability, panic, and psychosis. In some animal models, structural damage to the nervous system and other organs has been reported. So, distribution and usage of Ritalin should accurately be controlled and monitored to prevent its abuse

    DNA Methylation in Cancer: Epigenetic View of Dietary and Lifestyle Factors

    No full text
    Background: Alterations in DNA methylation play an important role in cancer development and progression. Dietary nutrients and lifestyle behaviors can influence DNA methylation patterns and thereby modulate cancer risk. Introduction: To comprehensively review available evidence on how dietary and lifestyle factors impact DNA methylation and contribute to carcinogenesis through epigenetic mechanisms. Materials and methods: A literature search was conducted using PubMed to identify relevant studies published between 2005 and 2022 that examined relationships between dietary/lifestyle factors and DNA methylation in cancer. Studies investigating the effects of dietary components (eg, micronutrients, phytochemicals), physical activity, smoking, and obesity on global and gene-specific DNA methylation changes in animal and human cancer models were included. Data on specific dietary/lifestyle exposures, cancer types, DNA methylation targets and underlying mechanisms were extracted. Results: Multiple dietary and lifestyle factors were found to influence DNA methylation patterns through effects on DNA methyltransferase activity, methyl donor availability, and generation of oxidative stress. Altered methylation of specific genes regulating cell proliferation, apoptosis, and inflammation were linked to cancer development and progression. Conclusion: Dietary and lifestyle interventions aimed at modulating DNA methylation have potential for both cancer prevention and treatment through epigenetic mechanisms. Further research is needed to identify actionable targets for nutrition and lifestyle-based epigenetic therapies
    corecore