96 research outputs found

    Blockchain Solution for IoT-based Critical Infrastructures: Byzantine Fault Tolerance

    Get PDF
    © 2020 IEEE. Providing an acceptable level of security for Internet of Things (IoT)-based critical infrastructures, such as the connected vehicles, considers as an open research issue. Nowadays, blockchain overcomes a wide range of network limitations. In the context of IoT and blockchain, Byzantine Fault Tolerance (BFT)-based consensus protocol, that elects a set of authenticated devices/nodes within the network, considers as a solution for achieving the desired energy efficiency over the other consensus protocols. In BFT, the elected devices are responsible for ensuring the data blocks\u27 integrity and preventing the concurrently appended blocks that might contain some malicious data. In this paper, we evaluate the fault-tolerance with different network settings, i.e., the number of connected vehicles. We verify and validate the proposed model with MATLAB/Simulink package simulations. The results show that our proposed hybrid scenario performed over the non-hybrid scenario taking throughput and latency in the consideration as the evaluated metrics

    Modeling and Evaluation of the Internet of Things Communication Protocols in Security Constrained Systems

    Get PDF
    As the term implies, the main focus when designing security constrained systems is ensuring that the defined constraints are strictly adhered to. Developers of such systems must identify a balance between providing user and data security while also ensuring that the service\u27s functionality is good. Extra security constraints can have a direct impact on other system aspects such as the communication between different devices especially in the emerging networking systems such as the Internet of Things and edge networking. In this work, we model and evaluate the main Internet of Things communication protocols including AMQP, CoAP, MQTT and XMPP in a security constrained system. We consider different evaluation metrics such the network utilization and success rate. Different protocols will react differently to the constrained security system but the increase in the communication latency is the common factor for all protocols

    Collusion attacks in Internet of Things: Detection and mitigation using a fog based model

    Get PDF
    © 2017 IEEE. This paper discusses the problem of collusion attacks in Internet of Things (IoT) environments and how mobility of IoT devices increases the difficulty of detecting such types of attacks. It demonstrates how approaches used in detecting collusion attacks in WSNs are not applicable in IoT environments. To this end, the paper introduces a model based on the Fog Computing infrastructure to keep track of IoT devices and detect collusion attackers. The model uses fog computing layer for real-time monitoring and detection of collusion attacks in IoT environments. Moreover, the model uses a software defined system layer to add a degree of flexibility for configuring Fog nodes in order to enable them to detect various types of collusion attacks. Furthermore, the paper highlights the possible overhead on Fog nodes and network when applying the proposed model, and claims that the Fog layer infrastructure can provide the required resources for the scalability of the model

    Blockchain-based database in an IoT environment: challenges, opportunities, and analysis

    Get PDF
    © 2020, Springer Science+Business Media, LLC, part of Springer Nature. As Bitcoin and other cryptocurrencies become widely popular recently, the underlying concept—Blockchain—gets unprecedented attentions. One popular usage of Blockchain is a distributed replicated database. In this paper, we present initial studies on the challenges and opportunities of using Blockchain as a database for Internet-of-Things (IoT) applications. For IoT applications, latency is an important factor, whereas for application developers, consistency is an important property which specifies how the system orders the operations over blocks (that are stored in the Blockchain). However, consistency property of Blockchain-based database is not well studied, especially in the case when network is not synchronized and the system is dynamic—both are typical scenario in an IoT environment. Intuitively, Blockchain is designed to maintain a single ground truth—one can view the Blockchain itself as the order of the blocks that all participants should observe and respect. In most Blockchain designs, the participants will eventually converge to the same chain of blocks. However, there is very few study on the challenges of using Blockchains as a database in an IoT environment. This paper focuses on the enabling technology behind Bitcoin, Bitcoin Backbone Protocol (BBP). We first survey Blockchain-based IoT applications, and identify why it is necessary to use it as a database for IoT applications. Then we explore several reasonable consistency models for BBP-based database, and then show that such a database does not satisfy many consistency models under certain typical IoT environments. Moreover, we use simulation to study how network quality and system dynamic affect consistency. Finally, we propose a simple mechanism to make the BBP-based database satisfy both read-my-write and eventual consistency

    Collusion attacks mitigation in internet of things: a fog based model

    Get PDF
    © 2017, Springer Science+Business Media, LLC. Collusion attacks are among the major security concerns nowadays due to the growth exposure in networks and communications. Internet of Things (IoT) environments are an attractive target for such type attacks. This paper discusses the problem of collusion attacks in IoT environments and how mobility of IoT devices increases the difficulty of detecting such types of attacks. It demonstrates how approaches used in detection collusion attacks in WSNs are not applicable in IoT environments. To this end, the paper introduces a model based on Fog Computing infrastructure to keep track of IoT devices and detect collusion attackers. The model uses fog computing layer for realtime monitoring and detection of collusion attacks in IoT environments. Moreover, the model uses a software defined systems layer to add a degree of flexibility for configuring Fog nodes to enable them to detect various types of collusion attacks. The paper provides algorithms, theorems, lemmas and mathematical proofs of the proposed model. Furthermore, the it highlights the possible overhead on fog nodes and network when applying the proposed model, and claims that fog layer infrastructure can provide the required resources for the scalability of the model. The experiments show how the proposed model can keep track of malicious nodes while moving from one cluster to other clusters in IoT environments in contrary to the models used in WSNs. Moreover, the experiments show that the proposed model can bear the computation overhead effectevilly, and reduces the power consumption of aggregator nodes in comparison to the models used in WSNs

    Authorship attribution of Arabic tweets

    Get PDF
    © 2016 IEEE. In tweet authentication, we are concerned with correctly attributing a tweet to its true author based on its textual content. The more general problem of authenticating long documents has been studied before and the most common approach relies on the intuitive idea that each author has a unique style that can be captured using stylometric features (SF). Inspired by the success of modern automatic document classification problem, some researchers followed the Bag-Of-Words (BOW) approach for authenticating long documents. In this work, we consider both approaches and their application on authenticating tweets, which represent additional challenges due to the limitation in their sizes. We focus on the Arabic language due to its importance and the scarcity of works related on it. We create different sets of features from both approaches and compare the performance of different classifiers using them. To the best of our knowledge, this is the first study of its kind to combine these different sets of features for authorship analysis of Arabic tweets. The results show that combining all the feature sets we compute yields the best results

    A Survey on Blockchain for Information Systems Management and Security

    Get PDF
    © 2020 Elsevier Ltd Blockchain technologies have grown in prominence in recent years, with many experts citing the potential applications of the technology in regard to different aspects of any industry, market, agency, or governmental organizations. In the brief history of blockchain, an incredible number of achievements have been made regarding how blockchain can be utilized and the impacts it might have on several industries. The sheer number and complexity of these aspects can make it difficult to address blockchain potentials and complexities, especially when trying to address its purpose and fitness for a specific task. In this survey, we provide a comprehensive review of applying blockchain as a service for applications within today\u27s information systems. The survey gives the reader a deeper perspective on how blockchain helps to secure and manage today information systems. The survey contains a comprehensive reporting on different instances of blockchain studies and applications proposed by the research community and their respective impacts on blockchain and its use across other applications or scenarios. Some of the most important findings this survey highlights include the fact that blockchain\u27s structure and modern cloud- and edge-computing paradigms are crucial in enabling a widespread adaption and development of blockchain technologies for new players in today unprecedented vibrant global market. Ensuring that blockchain is widely available through public and open-source code libraries and tools will help to ensure that the full potential of the technology is reached and that further developments can be made concerning the long-term goals of blockchain enthusiasts

    Providing secure and reliable communication for next generation networks in smart cities

    Get PDF
    © 2020 Elsevier Ltd Finding a framework that provides continuous, reliable, secure and sustainable diversified smart city services proves to be challenging in today\u27s traditional cloud centralized solutions. This article envisions a Mobile Edge Computing (MEC) solution that enables node collaboration among IoT devices to provide reliable and secure communication between devices and the fog layer on one hand, and the fog layer and the cloud layer on the other hand. The solution assumes that collaboration is determined based on nodes’ resource capabilities and cooperation willingness. Resource capabilities are defined using ontologies, while willingness to cooperate is described using a three-factor node criteria, namely: nature, attitude and awareness. A learning method is adopted to identify candidates for the service composition and delivery process. We show that the system does not require extensive training for services to be delivered correct and accurate. The proposed solution reduces the amount of unnecessary traffic flow to and from the edge, by relying on node-to-node communication protocols. Communication to the fog and cloud layers is used for more data and computing-extensive applications, hence, ensuring secure communication protocols to the cloud. Preliminary simulations are conducted to showcase the effectiveness of adapting the proposed framework to achieve smart city sustainability through service reliability and security. Results show that the proposed solution outperforms other semi-cooperative and non-cooperative service composition techniques in terms of efficient service delivery and composition delay, service hit ratio, and suspicious node identification
    • …
    corecore