44 research outputs found

    In Vivo Fluorescence Lifetime Imaging Monitors Binding of Specific Probes to Cancer Biomarkers

    Get PDF
    One of the most important factors in choosing a treatment strategy for cancer is characterization of biomarkers in cancer cells. Particularly, recent advances in Monoclonal Antibodies (MAB) as primary-specific drugs targeting tumor receptors show that their efficacy depends strongly on characterization of tumor biomarkers. Assessment of their status in individual patients would facilitate selection of an optimal treatment strategy, and the continuous monitoring of those biomarkers and their binding process to the therapy would provide a means for early evaluation of the efficacy of therapeutic intervention. In this study we have demonstrated for the first time in live animals that the fluorescence lifetime can be used to detect the binding of targeted optical probes to the extracellular receptors on tumor cells in vivo. The rationale was that fluorescence lifetime of a specific probe is sensitive to local environment and/or affinity to other molecules. We attached Near-InfraRed (NIR) fluorescent probes to Human Epidermal Growth Factor 2 (HER2/neu)-specific Affibody molecules and used our time-resolved optical system to compare the fluorescence lifetime of the optical probes that were bound and unbound to tumor cells in live mice. Our results show that the fluorescence lifetime changes in our model system delineate HER2 receptor bound from the unbound probe in vivo. Thus, this method is useful as a specific marker of the receptor binding process, which can open a new paradigm in the “image and treat” concept, especially for early evaluation of the efficacy of the therapy

    Improving the light quantification of near infrared (NIR) diffused light optical tomography with ultrasound localization

    No full text
    According to the statistics published by the American Cancer Society, currently breast cancer is the second most common cancer after skin cancer and the second cause of cancer death after lung cancer in the female population. Diffuse optical tomography (DOT) using near-infrared (NIR) light, guided by ultrasound localization, has shown great promise in distinguishing benign from malignant breast tumors and in assessing the response of breast cancer to chemotherapy. ^ Our ultrasound-guided DOT system is based on reflection geometry, with patients scanned in supine position using a hand-held probe. For patients with chest-wall located at a depth shallower than 1 to 2cm, as in about 10% of our clinical cases, the semi-infinite imaging medium is not a valid assumption and the chest-wall effect needs to be considered in the imaging reconstruction procedure. ^ In this dissertation, co-registered ultrasound images were used to model the breast-tissue and chest-wall as a two-layer medium. The effect of the chest wall on breast lesion reconstruction was systematically investigated. The performance of the two-layer model-based reconstruction, using the Finite Element Method, was evaluated by simulation, phantom experiments and clinical studies. The results show that the two-layer model can improve the accuracy of estimated background optical properties, the reconstructed absorption map and the total hemoglobin concentration of the lesion. ^ For patients\u27 data affected by chest wall, the perturbation, which is the difference between measurements obtained at lesion and normal reference sites, may include the information of background mismatch between these two sites. Because the imaging reconstruction is based on the perturbation approach, the effect of this mismatch between the optical properties at the two sites on reconstructed optical absorption was studied and a guideline for imaging procedure was developed to reduce these effects during data capturing. ^ To reduce the artifacts caused by the background mismatch between the lesion and reference sites, two solutions were introduced. The first solution uses a model-based approach and the second method uses an exogenous contrast agent. The results of phantom and animal studies show that both methods can significantly reduce artifacts generated by the background mismatch.

    Optical tomography method that accounts for tilted chest wall in breast imaging

    No full text
    The chest wall underneath breast tissue distorts light reflection measurements, especially measurements obtained from distant source-detector pairs. For patients with a chest wall located at a shallower depth, the chest-wall effect needs to be considered in the image reconstruction procedure. Following our previous studies, this work systemically evaluates the performance of a two-layer model-based reconstruction using the finite element method, and compares it with the performance of the semi-infinite model. The results obtained from simulations and phantom experiments show that the two-layer model improves the light quantification of the targets. The improvements are attributed to improved background estimation and more accurate weight matrix calculation using a two-layer model compared to the semi-infinite model. Fitted two-layer background optical properties obtained from a group of ten patients with chest walls located less than 2 cm deep are more representative of breast tissue and chest-wall optical properties

    Modern Trends in Imaging IX: Biophotonics Techniques for Structural and Functional Imaging, In Vivo

    No full text
    In vivo optical imaging is being conducted in a variety of medical applications, including optical breast cancer imaging, functional brain imaging, endoscopy, exercise medicine, and monitoring the photodynamic therapy and progress of neoadjuvant chemotherapy. In the past three decades, in vivo diffuse optical breast cancer imaging has shown promising results in cancer detection, and monitoring the progress of neoadjuvant chemotherapy. The use of near infrared spectroscopy for functional brain imaging has been growing rapidly. In fluorescence imaging, the difference between autofluorescence of cancer lesions compared to normal tissues were used in endoscopy to distinguish malignant lesions from normal tissue or inflammation and in determining the boarders of cancer lesions in surgery. Recent advances in drugs targeting specific tumor receptors, such as AntiBodies (MAB), has created a new demand for developing non-invasive in vivo imaging techniques for detection of cancer biomarkers, and for monitoring their down regulations during therapy. Targeted treatments, combined with new imaging techniques, are expected to potentially result in new imaging and treatment paradigms in cancer therapy. Similar approaches can potentially be applied for the characterization of other disease-related biomarkers. In this chapter, we provide a review of diffuse optical and fluorescence imaging techniques with their application in functional brain imaging and cancer diagnosis

    Artifact reduction method in ultrasound-guided diffuse optical tomography using exogenous contrast agents

    No full text
    In diffuse optical tomography (DOT), a typical perturbation approach requires two sets of measurements obtained at the lesion breast (lesion or target site) and a contra-lateral location of the normal breast (reference site) for image reconstruction. For patients who have a small amount of breast tissue, the chest-wall underneath the breast tissue at both sites affects the imaging results. In this group of patients, the perturbation, which is the difference between measurements obtained at the lesion and reference sites, may include the information of background mismatch which can generate artifacts or affect the reconstructed quantitative absorption coefficient of the lesion. Also, for patients who have a single breast due to prior surgery, the contra-lateral reference is not available. To improve the DOT performance or overcome its limitation, we introduced a new method based on an exogenous contrast agent and demonstrate its performance using animal models. Co-registered ultrasound was used to guide the lesion localization. The results have shown that artifacts caused by background mismatch can be reduced significantly by using this new method

    Effect of the chest wall on breast lesion reconstruction

    No full text

    Potential Role of Coregistered Photoacoustic and Ultrasound Imaging in Ovarian Cancer Detection and Characterization1

    Get PDF
    Currently, there is no adequate technology to detect early stage ovarian cancers. Most of the cancers in the ovary are detected when the cancer has already metastasized to other parts of the body. As a result, ovarian cancer has the highest mortality of all gynecologic cancers with a 5-year survival rate of 30% or less. Thus, there is an urgent need to improve the current diagnostic techniques. Photoacoustic imaging (PAI) is an emerging modality with a great potential to assist ultrasound for detecting ovarian cancer noninvasively. In this article, we report the first study of coregistered ultrasound and PAI of 33 ex vivo human ovaries. An assessment of the photoacoustic images has revealed light absorption distribution in the ovary, which is directly related to the vasculature distribution and amount. Quantification of the light absorption levels in the ovary has indicated that, in the postmenopausal group, malignant ovaries showed significantly higher light absorption than normal ones (P = .0237). For these two groups, we have obtained a sensitivity of 83% and a specificity of 83%. This result suggests that PAI is a promising modality for improving ultrasound diagnosis of ovarian cancer

    Using in vivo fluorescence lifetime imaging to detect HER2-positive tumors

    No full text
    Abstract Background Assessment of the status of tumor biomarkers in individual patients would facilitate personalizing treatment strategy, and continuous monitoring of those biomarkers and their binding process to the therapeutic drugs would provide a means for early evaluation of the efficacy of therapeutic intervention. Fluorescent probes can accumulate inside the tumor region due to the leakiness of its vascularization and this can make it difficult to distinguish if the measured fluorescence intensity is from probes bound to target receptors or just accumulated unbound probes inside the tumor. In this paper, we have studied the fluorescence lifetime as a means to distinguish bound HER2 specific affibody probes to HER2 receptors. Our imaging system is a time-resolved fluorescence system using a Ti-Sapphire femtosecond pulse laser as source and Time correlated Single photon Counting (TCSPC) system as detector for calculating the lifetime of the contrast agent. HER2-specific Affibody (His6-ZHER2:GS-Cys) (Affibody, Stockholm, Sweden) conjugated with a Dylight750 fluorescent probe (Thermo-Fisher-Scientific, Waltham, Massachusetts) was used as contrast agent and six human cancer cell lines, BT-474, SKOV-3, NCI-N87, MDA-MB-361, MCF-7, and MDA-MB-468, known to express different levels of HER2/neu, are used in athymic mice xenografts. Results By comparing the lifetime of unbound contrast agent (at the contralateral site) to the fluorescence lifetime at the tumor site, our results show that the fluorescence lifetime decreases as HER2 specific Affibody probes bind to the tumor receptors. A decrease of ~15% (100ps) in tumor fluorescence lifetime was observed in tumors with mid to high HER2 expression. Smaller decreases were observed in tumors with low-level of HER2 receptors and no change was observed in the non-HER2-expressing tumors. Conclusions Using HER2-specific Affibody conjugated with the Dylight750 fluorescent probe as contrast agent, we demonstrated in live animals that change in fluorescence lifetime of the bound contrast agent can be used to assess the high to mid-level expression of HER2 expressing tumors in-vivo in only one measurement. The rationale is that the fluorescence lifetime of our specific probe is sensitive to affinity to, and specific interaction with, other molecules

    In Vivo Method to Monitor Changes in HER2 Expression Using Near-Infrared Fluorescence Imaging

    No full text
    Human epidermal growth factor receptor type 2 (HER2) is a well-known biomarker that is overexpressed in many breast carcinomas. HER2 expression level is an important factor to optimize the therapeutic strategy and monitor the treatment. We used albumin binding domain–fused HER2-specific Affibody molecules, labeled with Alexa Fluor750 dye, to characterize HER2 expression in vivo. Near-infrared optical imaging studies were carried out using mice with subcutaneous HER2-positive tumors. Animals were divided into groups of five: no treatment and 12 hours and 1 week after treatment of the tumors with the Hsp90 inhibitor 17-dimethylaminoethylamino-17-demethoxygeldanamycin (17-DMAG). The compartmental ligands–receptor model, describing binding kinetics, was used to evaluate HER2 expression from the time sequence of the fluorescence images after the intravenous probe injection. The normalized rate of accumulation of the specific fluorescent biomarkers, estimated from this time sequence, linearly correlates with the conventional ex vivo enzyme-linked immunosorbent assay (ELISA) readings for the same tumor. Such correspondence makes properly arranged fluorescence imaging an excellent candidate for estimating HER2 overexpression in tumors, complementing ELISA and other ex vivo assays. Application of this method to the fluorescence data from HER2-positive xenografts reveals that the 17-DMAG treatment results in downregulation of HER2. Application of the AngioSense 750 probe confirmed the antiangiogenic effect of 17-DMAG found with Affibody–Alexa Fluor 750 conjugate
    corecore