32 research outputs found

    Calcium-sensing receptor in GtoPdb v.2023.1

    Get PDF
    The calcium-sensing receptor (CaS, provisional nomenclature as recommended by NC-IUPHAR [47] and subsequently updated [77]) responds to multiple endogenous ligands, including extracellular calcium and other divalent/trivalent cations, polyamines and polycationic peptides, L-amino acids (particularly L-Trp and L-Phe), glutathione and various peptide analogues, ionic strength and extracellular pH (reviewed in [78]). While divalent/trivalent cations, polyamines and polycations are CaS receptor agonists [14, 110], L-amino acids, glutamyl peptides, ionic strength and pH are allosteric modulators of agonist function [36, 47, 61, 108, 109]. Indeed, L-amino acids have been identified as "co-agonists", with both concomitant calcium and L-amino acid binding required for full receptor activation [149, 54]. The sensitivity of the CaS receptor to primary agonists is increased by elevated extracellular pH [18] or decreased extracellular ionic strength [109] while sensitivity is decreased by pathophysiological phosphate concentrations [20]. This receptor bears no sequence or structural relation to the plant calcium receptor, also called CaS

    Calcium-sensing receptor in GtoPdb v.2021.3

    Get PDF
    The calcium-sensing receptor (CaS, provisional nomenclature as recommended by NC-IUPHAR [47] and subsequently updated [77]) responds to multiple endogenous ligands, including extracellular calcium and other divalent/trivalent cations, polyamines and polycationic peptides, L-amino acids (particularly L-Trp and L-Phe), glutathione and various peptide analogues, ionic strength and extracellular pH (reviewed in [78]). While divalent/trivalent cations, polyamines and polycations are CaS receptor agonists [14, 110], L-amino acids, glutamyl peptides, ionic strength and pH are allosteric modulators of agonist function [36, 47, 61, 108, 109]. Indeed, L-amino acids have been identified as "co-agonists", with both concomitant calcium and L-amino acid binding required for full receptor activation [148, 54]. The sensitivity of the CaS receptor to primary agonists is increased by elevated extracellular pH [18] or decreased extracellular ionic strength [109]. This receptor bears no sequence or structural relation to the plant calcium receptor, also called CaS

    Calcium-sensing receptor (version 2020.5) in the IUPHAR/BPS Guide to Pharmacology Database

    Get PDF
    The calcium-sensing receptor (CaS, provisional nomenclature as recommended by NC-IUPHAR [46] and subsequently updated [76]) responds to multiple endogenous ligands, including extracellular calcium and other divalent/trivalent cations, polyamines and polycationic peptides, L-amino acids (particularly L-Trp and L-Phe), glutathione and various peptide analogues, ionic strength and extracellular pH (reviewed in [77]). While divalent/trivalent cations, polyamines and polycations are CaS receptor agonists [14, 109], L-amino acids, glutamyl peptides, ionic strength and pH are allosteric modulators of agonist function [35, 46, 60, 107, 108]. Indeed, L-amino acids have been identified as "co-agonists", with both concomitant calcium and L-amino acid binding required for full receptor activation [147, 53]. The sensitivity of the CaS receptor to primary agonists is increased by elevated extracellular pH [17] or decreased extracellular ionic strength [108]. This receptor bears no sequence or structural relation to the plant calcium receptor, also called CaS

    Calcium-sensing receptor (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database

    Get PDF
    The calcium-sensing receptor (CaS, provisional nomenclature as recommended by NC-IUPHAR [44]) responds to multiple endogenous ligands, including extracellular calcium and other divalent/trivalent cations, polyamines and polycationic peptides, L-amino acids (particularly L-Trp and L-Phe), glutathione and various peptide analogues, ionic strength and extracellular pH (reviewed in [74]). While divalent/trivalent cations, polyamines and polycations are CaS receptor agonists [14, 106], L-amino acids, glutamyl peptides, ionic strength and pH are allosteric modulators of agonist function [34, 44, 58, 104, 105]. Indeed, L-amino acids have been identified as "co-agonists", with both concomitant calcium and L-amino acid binding required for full receptor activation [143, 51]. The sensitivity of the CaS receptor to primary agonists is increased by elevated extracellular pH [17] or decreased extracellular ionic strength [105]. This receptor bears no sequence or structural relation to the plant calcium receptor, also called CaS

    Improving and accelerating the differentiation and functional maturation of human stem cell-derived neurons: role of extracellular calcium and GABA

    Get PDF
    Neurons differentiated from pluripotent stem cells using established neural culture conditions often exhibit functional deficits. Recently, we have developed enhanced media which both synchronize the neurogenesis of pluripotent stem cell-derived neural progenitors and accelerate their functional maturation; together these media are termed SynaptoJuice. This pair of media are pro-synaptogenic and generate authentic, mature synaptic networks of connected forebrain neurons from a variety of induced pluripotent and embryonic stem cell lines. Such enhanced rate and extent of synchronized maturation of pluripotent stem cell-derived neural progenitor cells generates neurons which are characterized by a relatively hyperpolarized resting membrane potential, higher spontaneous and induced action potential activity, enhanced synaptic activity, more complete development of a mature inhibitory GABAA receptor phenotype and faster production of electrical network activity when compared to standard differentiation media. This entire process – from pre-patterned neural progenitor to active neuron – takes 3 weeks or less, making it an ideal platform for drug discovery and disease modelling in the fields of human neurodegenerative and neuropsychiatric disorders, such as Huntington's disease, Parkinson's disease, Alzheimer's disease and Schizophrenia

    Kv7 channels are upregulated during striatal neuron development and promote maturation of human iPSC-derived neurons

    Get PDF
    Kv7 channels determine the resting membrane potential of neurons and regulate their excitability. Even though dysfunction of Kv7 channels has been linked to several debilitating childhood neuronal disorders, the ontogeny of the constituent genes, which encode Kv7 channels (KNCQ), and expression of their subunits have been largely unexplored. Here, we show that developmentally regulated expression of specific KCNQ mRNA and Kv7 channel subunits in mouse and human striatum is crucial to the functional maturation of mouse striatal neurons and human-induced pluripotent stem cell-derived neurons. This demonstrates their pivotal role in normal development and maturation, the knowledge of which can now be harnessed to synchronise and accelerate neuronal differentiation of stem cell-derived neurons, enhancing their utility for disease modelling and drug discovery

    Impaired Mineral Ion Metabolism in a Mouse Model of Targeted Calcium-Sensing Receptor (CaSR) Deletion from Vascular Smooth Muscle Cells

    Get PDF
    Background Impaired mineral ion metabolism is a hallmark of CKD–metabolic bone disorder. It can lead to pathologic vascular calcification and is associated with an increased risk of cardiovascular mortality. Loss of calcium-sensing receptor (CaSR) expression in vascular smooth muscle cells exacerbates vascular calcification in vitro. Conversely, vascular calcification can be reduced by calcimimetics, which function as allosteric activators of CaSR. Methods To determine the role of the CaSR in vascular calcification, we characterized mice with targeted Casr gene knockout in vascular smooth muscle cells (SM22αCaSRΔflox/Δflox). Results Vascular smooth muscle cells cultured from the knockout (KO) mice calcified more readily than those from control (wild-type) mice in vitro. However, mice did not show ectopic calcifications in vivo but they did display a profound mineral ion imbalance. Specifically, KO mice exhibited hypercalcemia, hypercalciuria, hyperphosphaturia, and osteopenia, with elevated circulating fibroblast growth factor 23 (FGF23), calcitriol (1,25-D3), and parathyroid hormone levels. Renal tubular α-Klotho protein expression was increased in KO mice but vascular α-Klotho protein expression was not. Altered CaSR expression in the kidney or the parathyroid glands could not account for the observed phenotype of the KO mice. Conclusions These results suggest that, in addition to CaSR’s established role in the parathyroid-kidney-bone axis, expression of CaSR in vascular smooth muscle cells directly contributes to total body mineral ion homeostasis

    Calcium-sensing receptor antagonists abrogate airway hyperresponsiveness and inflammation in allergic asthma

    Get PDF
    Airway hyperresponsiveness and inflammation are fundamental hallmarks of allergic asthma that are accompanied by increases in certain polycations, such as eosinophil cationic protein. Levels of these cations in body fluids correlate with asthma severity. We show that polycations and elevated extracellular calcium activate the human recombinant and native calcium-sensing receptor (CaSR), leading to intracellular calcium mobilization, cyclic adenosine monophosphate breakdown, and p38 mitogen-activated protein kinase phosphorylation in airway smooth muscle (ASM) cells. These effects can be prevented by CaSR antagonists, termed calcilytics. Moreover, asthmatic patients and allergen-sensitized mice expressed more CaSR in ASMs than did their healthy counterparts. Indeed, polycations induced hyperreactivity in mouse bronchi, and this effect was prevented by calcilytics and absent in mice with CaSR ablation from ASM. Calcilytics also reduced airway hyperresponsiveness and inflammation in allergen-sensitized mice in vivo. These data show that a functional CaSR is up-regulated in asthmatic ASM and targeted by locally produced polycations to induce hyperresponsiveness and inflammation. Thus, calcilytics may represent effective asthma therapeutics

    Inhaled calcilytics: effects on airway inflammation and remodeling

    Get PDF
    Chronic obstructive pulmonary disease (COPD) is a major cause of mortality and there is a lack of available drugs that reduce the decline in lung function seen with disease progression. Therefore, there is clearly an unmet need for new therapeutics. Previously, we have shown that calcium sensing receptor (CaSR) activation elicits airways hyper-responsiveness and inflammation in pre-clinical in vivo murine models of asthma. However, the role of CaSR in the progression of COPD is currently unknown. In this article, a role for CaSR and topical calcilytic therapies will be proposed and discussed to reduce COPD pathogenesis and disease progression. The proposal is supported by new data on the anti-inflammatory effects of the inhaled negative allosteric CaSR modulator or calcilytic, NPS89636. The effects of NPS89636 were studied in an in vivo model of COPD induced in guinea pigs by inhalation of lipopolysaccharide (LPS); as in human subjects with COPD, pulmonary inflammation in the guinea pig lungs were shown to be insensitive to inhaled corticosteroids. Here, we show that treatment with NPS89636 reduced inflammation, specifically leukocyte and neutrophil infiltration, in the airways of LPS-treated animals. In addition, calcilytic treatment reduced lung interstitial wall thickening. These effects were unlikely attributable to off-target calcilytic actions on the parathyroid glands, as free ionized blood calcium levels were not altered for up to 24 hours after calcilytic inhalation. Together, these observations suggested that topically delivered calcilytics may represent a novel treatment strategy for COPD
    corecore