2 research outputs found

    Study of Water Binding Capacity, pH, Chemical Composition and Microstructure of Livestock Meat and Poultry

    Get PDF
    This paper shows the results of analysis of chemical composition, water binding capacity, pH and microstructure of maral meat, goat meat, lamb, and turkey meat. From the analysis, the high content of protein and ash is observed in turkey meat, fat prevails in lamb, and less amount in maral meat and goat meat. pH value lies between 5.7 (turkey white meat) and 6.4 (goat meat). Low value of water binding capacity is detected in turkey meat (58.2% in red meat, 59.2% in white meat) and high value – in maral meat 79.57%. The morphology and microstructure of meat have some differences in position and diameter of muscle fibers. Micrographic investigation shows that the largest diameter of muscle fibers was observed in turkey white meat (46.58 µm) and the smallest – in muscle tissue of lamb (29.92 µm). Obtained results will be useful for further processing and developing meat products

    Development of Minced Meatball Composition for the Population from Unfavorable Ecological Regions

    Get PDF
    In this paper, a new technology for meatball production is presented. The ingredients in the formulation used are low value parts of poultry meat (neck and back part), rice, sea cabbage (Laminaria) and carrot. Three variants of meatball were prepared with different weight ratios of Laminaria: variant 1 – 15%, variant 2 – 10% and variant 3 – 5%. The comparative quality and organoleptic indicators of meatballs are studied. As a result, when compared with the control meatballs, the developed meatballs have soft consistency, a pleasant flavor, better sensory characteristics and balanced composition. The highest level of protein was obtained in variant 2 (19.7%) while the lowest one was determined in the control sample (10.1%). Variant 2 meatball also showed an increased level of mineral elements – 3.11%, compared with variant 1 (2.6%) and variant 3 (1.6%). The moisture content of the developed meatballs varied from 67.1% to 69.3% and these values are much higher than in the control sample (61.64%). Also, the developed meatballs show a higher content of fat compared with the control sample. Different proportions of Laminaria in meatball formulations caused significant changes in content of I, Mg, K and Na. The concentrations of these elements were reduced when the Laminaria weight ratio in meatballs was lowered. Using Laminaria demonstrated a positive effect to the food quality of meatball
    corecore