64 research outputs found

    Linking magmatism with collision in an accretionary orogen

    Get PDF
    A compilation of U-Pb age, geochemical and isotopic data for granitoid plutons in the southern Central Asian Orogenic Belt (CAOB), enables evaluation of the interaction between magmatism and orogenesis in the context of Paleo-Asian oceanic closure and continental amalgamation. These constraints, in conjunction with other geological evidence, indicate that following consumption of the ocean, collision-related calc-alkaline granitoid and mafic magmatism occurred from 255 ± 2 Ma to 251 ± 2 Ma along the Solonker-Xar Moron suture zone. The linear or belt distribution of end-Permian magmatism is interpreted to have taken place in a setting of final orogenic contraction and weak crustal thickening, probably as a result of slab break-off. Crustal anatexis slightly post-dated the early phase of collision, producing adakite-like granitoids with some S-type granites during the Early-Middle Triassic (ca. 251-245 Ma). Between 235 and 220 Ma, the local tectonic regime switched from compression to extension, most likely caused by regional lithospheric extension and orogenic collapse. Collision-related magmatism from the southern CAOB is thus a prime example of the minor, yet tell-tale linking of magmatism with orogenic contraction and collision in an archipelago-type accretionary orogen

    On the crystal structure of Îł

    No full text

    Evolution of Syenite Magmas: Insights from the Geology, Geochemistry and O-Nd Isotopic Characteristics of the Ordovician Saibar Intrusion, Altai-Sayan Area, Russia

    No full text
    In this paper, we provide insight into the evolution of syenite magmas based on geological data and petrographic, geochemical, and O-Nd isotope parameters of rocks of the Saibar intrusion located within the Minusinsk Trough, Altay-Sayan area. The intrusive suite includes predominant syenites, few bodies of melanocratic and leucocratic nepheline syenites (foyaites), and granites. In addition, dykes of granites and mafic rocks are present. The U-Pb zircon age from the melanocratic foyaites was determined to be 457 ± 10 Ma? Examined rocks show fractionated light rare earth element patterns, normalized to chondrite, with (La/Sm)n varying from 4 to 9, and a weakly fractionated distribution of medium and heavy rare elements, with (Dy/Yb)n from 0.35 to 1.23 and (Sm/Yb)n from 0.63 to 2.62. The spidergram normalized to the primitive mantle shows negative Ba, Sr, Nb, Ta, Ti, and Eu anomalies (Eu* = 0.48–0.60) and positive Rb, Th, and U anomalies. The ÎŽ18O values vary within 6.3 to 10.2‰, and ΔNd(t) from +4.1 to +5.0. We observe gradual transitions from syenites to foyaites. Assimilation by syenite magma of the host carbonate rocks was followed to transition from silica-saturated to silica-undersaturated conditions and removal of anorthite from the melt, which then led to nepheline. Granites of the main phase show depleted lithophile incompatible elements in comparison with syenites and foyaites. They originate via interaction of magmas at the marginal part (endocontact zone) of the intrusion, corresponding to north contact of the granites with the host felsic rocks. In comparison, the rock composition of granite dykes is enriched in lithophile incompatible elements, except for Zr, Hf, and Ti. These rocks are formed due to the differentiation of syenite magma without a significant effect of host rock assimilation. Mantle magmas must be used as parent magmas for syenites based on analysis of the formation model of other alkaline intrusions, which are similar in age to the Saibar intrusion. In the line of syenite intrusions of the Altai-Sayan province, the Saibar intrusion is no exception, and its origin is related to the evolution of mafic magmas that arose during the melting of the mantle under the influence of a mantle plume
    • 

    corecore