2 research outputs found

    Monitoring Humic Acid Photodegradation by CUPRAC Colorimetric and HPLC Determination of Dihydroxybenzoate Isomers Produced From a Salicylate Probe

    No full text
    Novel analytical methods were designed for monitoring humic acid photodegradation in environmental waters. Modified CUPric Reducing Antioxidant Capacity (CUPRAC) spectrophotometric and chromatographic methods were used for the determination of dihydroxybenzoate isomers (DHBAs) produced from a salicylate probe, which was hydroxylated by hydroxyl radicals ((OH)-O-center dot) produced from the photodegradation of humic acid under ultraviolet A-radiation. The combined use of CUPRAC colorimetry and HPLC was shown to effectively monitor humic acid photodegradation and (OH)-O-center dot generation for the first time. The formation of 2,5-dihydroxybenzoate and 2,3-dihydroxybenzoate, as major and minor products, respectively, from the hydroxylation of a salicylate probe was demonstrated by HPLC and confirmed by a modified CUPRAC method to indicate (OH)-O-center dot formation from humic acid, which acted as both a generator and absorber of hydroxyl radicals. Salicylate hydroxylation showed an increase between 30 and 50 min of illumination, and was affected by the initial concentration of humic acid up to 0.01% but not by solution pH around the neutral values. Traces of Fe(III) and Mn(II) present in natural waters decreased the (OH)-O-center dot production, but EDTA partly restored the probe hydroxylation by chelating these metal cations. Since humic acid-mediated (OH)-O-center dot generation may aid in natural disinfection processes, this work may extend our comprehension of concentration- and time-dependent generation of (OH)-O-center dot in environmental waters and of the possible effects of other antioxidants

    Ethylenediamine-bound magnetite nanoparticles as dual function colorimetric sensor having charge transfer and nanozyme activity for TNT and tetryl detection

    No full text
    A reusable, low-cost, and convenient ethylenediamine (EDA)-bound magnetite nanoparticles (MNPs)-based colorimetric sensor has been developed for dual function colorimetric determination of nitroaromatic explosives such as TNT and tetryl. Colorimetric detection of analytes may occur through two independent routes: (1) nano-Fe3O4- EDA- NH2 as sigma-donor may interact with the sigma- and pi-acceptor aromatic-poly(NO2) groups to produce a colored charge-transfer (CT) complex; (2) nano-Fe3O4-EDA-NH2 as a Fenton-type nanozyme may generate reactive species that comprise hydroxyl radicals ((OH)-O-center dot) with H2O2 to oxidize 3,3 ',5,5 '-tetramethylbenzidine (TMB) to a blue-colored diimine (oxTMB-TMB) CT complex, where this color is bleached with TNT/tetryl because of donor-acceptor interactions between the explosive -NO2 groups and the -NH2 group of Fe3O4-EDA nanoparticles of restricted nanozyme activity. Both methods can quantify TNT well below the EPA recommended TNT residential screening level in soil, LOD being in the micromolar range. As EDA was covalently bound to MNPs, the same sensor can be separately reused six times for TNT and eight times for tetryl determination, using method (1). Common metal ions, anions, energetic materials, several camouflage materials, and soil components such as humates did not interfere with the nanosensor performance for TNT and tetryl. The combination of charge-transfer and nanozyme ability of Fe3O4- EDA-NH2 nanoparticles may bring a new approach to dual function colorimetric sensor design. To the best of our knowledge, this is the first dual function colorimetric sensor for TNT and tetryl using the same nanoparticles as sensing elements in two different detection systems involving either formation or bleaching of colored species
    corecore