513 research outputs found

    Development of tumor mutation burden as an immunotherapy biomarker: utility for the oncology clinic.

    Get PDF
    Treatment with immune checkpoint blockade (ICB) with agents such as anti-programmed cell death protein 1 (PD-1), anti-programmed death-ligand 1 (PD-L1), and/or anti-cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) can result in impressive response rates and durable disease remission but only in a subset of patients with cancer. Expression of PD-L1 has demonstrated utility in selecting patients for response to ICB and has proven to be an important biomarker for patient selection. Tumor mutation burden (TMB) is emerging as a potential biomarker. However, refinement of interpretation and contextualization is required. In this review, we outline the evolution of TMB as a biomarker in oncology, delineate how TMB can be applied in the clinic, discuss current limitations as a diagnostic test, and highlight mechanistic insights unveiled by the study of TMB. We review available data to date studying TMB as a biomarker for response to ICB by tumor type, focusing on studies proposing a threshold for TMB as a predictive biomarker for ICB activity. High TMB consistently selects for benefit with ICB therapy. In lung, bladder and head and neck cancers, the current predictive TMB thresholds proposed approximate 200 non-synonymous somatic mutations by whole exome sequencing (WES). PD-L1 expression influences response to ICB in high TMB tumors with single agent PD-(L)1 antibodies; however, response may not be dependent on PD-L1 expression in the setting of anti-CTLA4 or anti-PD-1/CTLA-4 combination therapy. Disease-specific TMB thresholds for effective prediction of response in various other malignancies are not well established. TMB, in concert with PD-L1 expression, has been demonstrated to be a useful biomarker for ICB selection across some cancer types; however, further prospective validation studies are required. TMB determination by selected targeted panels has been correlated with WES. Calibration and harmonization will be required for optimal utility and alignment across all platforms currently used internationally. Key challenges will need to be addressed before broader use in different tumor types

    Hypertension and hand-foot skin reactions related to VEGFR2 genotype and improved clinical outcome following bevacizumab and sorafenib

    Get PDF
    BACKGROUND: Hypertension (HT) and hand-foot skin reactions (HFSR) may be related to the activity of bevacizumab and sorafenib. We hypothesized that these toxicities would correspond to favorable outcome in these drugs, that HT and HFSR would coincide, and that VEGFR2 genotypic variation would be related to toxicity and clinical outcomes. METHODS: Toxicities (≥ grade 2 HT or HFSR), progression-free survival (PFS), and overall survival (OS) following treatment initiation were evaluated. Toxicity incidence and VEGFR2 H472Q and V297I status were compared to clinical outcomes. RESULTS: Individuals experiencing HT had longer PFS following bevacizumab therapy than those without this toxicity in trials utilizing bevacizumab in patients with prostate cancer (31.5 vs 14.9 months, n = 60, P = 0.0009), and bevacizumab and sorafenib in patients with solid tumors (11.9 vs. 3.7 months, n = 27, P = 0.052). HT was also linked to a > 5-fold OS benefit after sorafenib and bevacizumab cotherapy (5.7 versus 29.0 months, P = 0.0068). HFSR was a marker for prolonged PFS during sorafenib therapy (6.1 versus 3.7 months respectively, n = 113, P = 0.0003). HT was a risk factor for HFSR in patients treated with bevacizumab and/or sorafenib (OR(95%CI) = 3.2(1.5-6.8), P = 0.0024). Carriers of variant alleles at VEGFR2 H472Q experienced greater risk of developing HT (OR(95%CI) = 2.3(1.2 - 4.6), n = 170, P = 0.0154) and HFSR (OR(95%CI) = 2.7(1.3 - 5.6), n = 170, P = 0.0136). CONCLUSIONS: This study suggests that HT and HFSR may be markers for favorable clinical outcome, HT development may be a marker for HFSR, and VEGFR2 alleles may be related to the development of toxicities during therapy with bevacizumab and/or sorafenib

    Drug transport in brain via the cerebrospinal fluid

    Get PDF
    The human brain has no lymphatic system, but produces over a half-liter each day of cerebrospinal fluid. The cerebrospinal fluid is secreted at the choroid plexus and occupies the cavities of the four ventricles, as well as the cranial and spinal sub-arachnoid space. The cerebrospinal fluid moves over the surfaces of the brain and spinal cord and is rapidly absorbed into the general circulation. The choroid plexus forms the blood-cerebrospinal fluid barrier, and this barrier is functionally distinct from the brain microvascular endothelium, which forms the blood-brain barrier. Virtually all non-cellular substances in blood distribute into cerebrospinal fluid, and drug entry into cerebrospinal fluid is not an index of drug transport across the blood-brain barrier. Drug injected into the cerebrospinal fluid rapidly moves into the blood via bulk flow, but penetrates into brain tissue poorly owing to the limitations of diffusion. Drug transport into cerebrospinal fluid vs. brain interstitial fluid requires knowledge of the relative expression of transporters at the choroid plexus versus the brain microvascular endothelium

    Chronic Losartan Administration Reduces Mortality and Preserves Cardiac but Not Skeletal Muscle Function in Dystrophic Mice

    Get PDF
    Duchenne muscular dystrophy (DMD) is a degenerative disorder affecting skeletal and cardiac muscle for which there is no effective therapy. Angiotension receptor blockade (ARB) has excellent therapeutic potential in DMD based on recent data demonstrating attenuation of skeletal muscle disease progression during 6–9 months of therapy in the mdx mouse model of DMD. Since cardiac-related death is major cause of mortality in DMD, it is important to evaluate the effect of any novel treatment on the heart. Therefore, we evaluated the long-term impact of ARB on both the skeletal muscle and cardiac phenotype of the mdx mouse. Mdx mice received either losartan (0.6 g/L) (n = 8) or standard drinking water (n = 9) for two years, after which echocardiography was performed to assess cardiac function. Skeletal muscle weight, morphology, and function were assessed. Fibrosis was evaluated in the diaphragm and heart by Trichrome stain and by determination of tissue hydroxyproline content. By the study endpoint, 88% of treated mice were alive compared to only 44% of untreated (p = 0.05). No difference in skeletal muscle morphology, function, or fibrosis was noted in losartan-treated animals. Cardiac function was significantly preserved with losartan treatment, with a trend towards reduction in cardiac fibrosis. We saw no impact on the skeletal muscle disease progression, suggesting that other pathways that trigger fibrosis dominate over angiotensin II in skeletal muscle long term, unlike the situation in the heart. Our study suggests that ARB may be an important prophylactic treatment for DMD-associated cardiomyopathy, but will not impact skeletal muscle disease

    The triple combination of tenofovir, emtricitabine and efavirenz shows synergistic anti-HIV-1 activity in vitro: a mechanism of action study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Tenofovir disoproxil fumarate (TDF), emtricitabine (FTC), and efavirenz (EFV) are the three components of the once-daily, single tablet regimen (Atripla) for treatment of HIV-1 infection. Previous cell culture studies have demonstrated that the double combination of tenofovir (TFV), the parent drug of TDF, and FTC were additive to synergistic in their anti-HIV activity, which correlated with increased levels of intracellular phosphorylation of both compounds.</p> <p>Results</p> <p>In this study, we demonstrated the combinations of TFV+FTC, TFV+EFV, FTC+EFV, and TFV+FTC+EFV synergistically inhibit HIV replication in cell culture and synergistically inhibit HIV-1 reverse transcriptase (RT) catalyzed DNA synthesis in biochemical assays. Several different methods were applied to define synergy including median-effect analysis, MacSynergy<sup>®</sup>II and quantitative isobologram analysis. We demonstrated that the enhanced formation of dead-end complexes (DEC) by HIV-1 RT and TFV-terminated DNA in the presence of FTC-triphosphate (TP) could contribute to the synergy observed for the combination of TFV+FTC, possibly through reduced terminal NRTI excision. Furthermore, we showed that EFV facilitated efficient formation of stable, DEC-like complexes by TFV- or FTC-monophosphate (MP)-terminated DNA and this can contribute to the synergistic inhibition of HIV-1 RT by TFV-diphosphate (DP)+EFV and FTC-TP+EFV combinations.</p> <p>Conclusion</p> <p>This study demonstrated a clear correlation between the synergistic antiviral activities of TFV+FTC, TFV+EFV, FTC+EFV, and TFV+FTC+EFV combinations and synergistic HIV-1 RT inhibition at the enzymatic level. We propose the molecular mechanisms for the TFV+FTC+EFV synergy to be a combination of increased levels of the active metabolites TFV-DP and FTC-TP and enhanced DEC formation by a chain-terminated DNA and HIV-1 RT in the presence of the second and the third drug in the combination. This study furthers the understanding of the longstanding observations of synergistic anti-HIV-1 effects of many NRTI+NNRTI and certain NRTI+NRTI combinations in cell culture, and provides biochemical evidence that combinations of anti-HIV agents can increase the intracellular drug efficacy, without increasing the extracellular drug concentrations.</p
    corecore