11 research outputs found

    Optimizing Geant4 Hadronic Models

    Full text link
    Geant4, the leading detector simulation toolkit used in high energy physics, employs a set of physics models to simulate interactions of particles with matter across a wide range of energies. These models, especially the hadronic ones, rely largely on directly measured cross-sections and inclusive characteristics, and use physically motivated parameters. However, they generally aim to cover a broad range of possible simulation tasks and may not always be optimized for a particular process or a given material. The Geant4 collaboration recently made many parameters of the models accessible via a configuration interface. This opens a possibility to fit simulated distributions to the thin target experimental datasets and extract optimal values of the model parameters and the associated uncertainties. Such efforts are currently undertaken by the Geant4 collaboration with the goal of offering alternative sets of model parameters, also known as "tunes", for certain applications. The effort should subsequently lead to more accurate estimates of the systematic errors in physics measurements given the detector simulation role in performing the physics measurements. Results of the study are presented to illustrate how Geant4 model parameters can be optimized through applying fitting techniques, to improve the agreement between the Geant4 and the experimental data.Comment: 26th International Conference on Computing in High Energy & Nuclear Physics (CHEP 2023

    The GENIE Neutrino Monte Carlo Generator: Physics and User Manual

    Get PDF
    GENIE is a suite of products for the experimental neutrino physics community. This suite includes i) a modern software framework for implementing neutrino event generators, a state-of-the-art comprehensive physics model and tools to support neutrino interaction simulation for realistic experimental setups (the Generator product), ii) extensive archives of neutrino, charged-lepton and hadron scattering data and software to produce a comprehensive set of data/MC comparisons (the Comparisons product), and iii) a generator tuning framework and fitting applications (the Tuning product). This book provides the definite guide for the GENIE Generator: It presents the software architecture and a detailed description of its physics model and official tunes. In addition, it provides a rich set of data/MC comparisons that characterise the physics performance of GENIE. Detailed step-by-step instructions on how to install and configure the Generator, run its applications and analyze its outputs are also included

    Optimizing Geant4 Hadronic Models

    No full text
    Geant4, the leading detector simulation toolkit used in high energy physics, employs a set of physics models to simulate interactions of particles with matter across a wide range of energies. These models, especially the hadronic ones, rely largely on directly measured cross-sections and inclusive characteristics, and use physically motivated parameters. However, they generally aim to cover a broad range of possible simulation tasks and may not always be optimized for a particular process or a given material. The Geant4 collaboration recently made many parameters of the models accessible via a configuration interface. This opens a possibility to fit simulated distributions to the thin target experimental datasets and extract optimal values of the model parameters and the associated uncertainties. Such efforts are currently undertaken by the Geant4 collaboration with the goal of offering alternative sets of model parameters, also known as "tunes", for certain applications. The effort should subsequently lead to more accurate estimates of the systematic errors in physics measurements given the detector simulation role in performing the physics measurements. Results of the study are presented to illustrate how Geant4 model parameters can be optimized through applying fitting techniques, to improve the agreement between the Geant4 and the experimental data

    A Software Toolkit to Study Systematic Uncertainties of the Physics Models of the Geant4 Simulation Package

    No full text
    The Geant4 toolkit is used to model interactions between particles and matter. Geant4 employs a set of validated physics models that span a wide range of interaction energies. These models are tuned to cover a large variety of possible applications. This raises the critical question of what uncertainties are associated with the Geant4 physics model, or group of models, involved in a simulation project. To address the challenge, we have designed and implemented a comprehen- sive, modular, user-friendly software toolkit that allows the variation of one or more parameters of one or more Geant4 physics models involved in simulation studies. It also enables analysis of multiple variants of the resulting physics observables of interest in order to estimate the uncertain- ties associated with the simulation model choices. Key functionalities of the toolkit are presented in this paper and are illustrated with selected results

    Software Aspects of the Geant4 Validation Repository

    No full text
    The Geant4, GeantV and GENIE collaborations regularly perform validation and regression tests for simulation results. DoSSiER (Database of Scientic Simulation and Experimental Results) is being developed as a central repository to store the simulation results as well as the experimental data used for validation. DoSSiER is easily accessible via a web application. In addition, a web service allows for programmatic access to the repository to extract records in JSON or XML exchange formats. In this article, we describe the functionality and the current status of various components of DoSSiER as well as the technology choices we made

    DoSSiER: Database of Scientific Simulation and Experimental Results

    No full text
    The Geant4, GeantV and GENIE collaborations regularly perform validation and regression tests for simulation results. DoSSiER (Database of Scientific Simulation and Experimental Results) is being developed as a central repository to store the simulation results as well as the experimental data used for validation. DoSSiER can be easily accessed via a web application. In addition, a web service allows for programmatic access to the repository to extract records in json or xml exchange formats. In this article, we describe the functionality and the current status of various components of DoSSiER as well as the technology choices we made

    SLAC-PUB-15662 Hadronic Physics in Geant4: Improvements and Status for LHC Start

    Get PDF
    PoS(ACAT08)111 An overview of recent developments in Geant4 hadronic modelling is provided with a focus on the start of the LHC experiments. Improvements in low-energy and high energy models were introduced. Many of these developments were directed toward increasing the precision of simulated hadronic showers for LHC detectors. Theoretical arguments were used as well as tuning to thin target experiment data. The testing suite for the Geant4 hadronic models was extended. Selected validation results are presented. The variants of Geant4 physics model configurations (Physics Lists) for LHC experiments are discussed
    corecore