2 research outputs found
DataSheet_1_Comprehensive resistance evaluation of 15 blueberry cultivars under high soil pH stress based on growth phenotype and physiological traits.docx
High soil pH is one of the main abiotic factors that negatively affects blueberry growth and cultivation. However, no comprehensive evaluation of the high soil pH tolerance of different blueberry cultivars has been conducted. Herein, 16 phenotypic and physiological indices of 15 blueberry cultivars were measured through pot experiments, and the high-pH soil tolerance coefficient (HSTC) was calculated based on these indices to comprehensively evaluate the high-soil-pH tolerance of plants. The results demonstrated that high soil pH stress inhibited blueberry 77.growth, and MDA, soluble sugar (SS), and soluble protein (SP) levels increased in leaves. Moreover, in all cultivars, CAT activity in the antioxidant system was enhanced, whereas SOD activity was reduced, and the relative expression levels of the antioxidant enzyme genes SOD and CAT showed similar changes. In addition, the leaf chlorophyll relative content (SPAD), net photosynthetic rate (Pn), transpiration rate (E), and stomatal conductance (Gs) decreased, while changes in the intercellular CO2 concentration (Ci) were noted in different cultivars. Finally, according to the comprehensive evaluation value D obtained from the combination of principal component analysis (PCA) and membership function (MF), the 15 blueberry cultivars can be divided into 4 categories: high soil pH-tolerant type [‘Briteblue’ (highest D value 0.815)], intermediate tolerance type (‘Zhaixuan 9’, ‘Zhaixuan 7’, ‘Emerald’, ‘Primadonna’, ‘Powderblue’ and ‘Chandler’), low high soil pH-tolerant type (‘Brightwell’, ‘Gardenblue’, ‘Plolific’ and ‘Sharpblue’) and high soil pH-sensitive type [‘Legacy’, ‘Bluegold’, ‘Baldwin’ and ‘Anna’ (lowest D value 0.166)]. Stepwise linear regression analysis revealed that plant height, SS, E, leaf length, Ci, SOD, and SPAD could be used to predict and evaluate the high soil pH tolerance of blueberry cultivars.</p
Table_1_Long-term cultivation drives dynamic changes in the rhizosphere microbial community of blueberry.DOCX
Rhizosphere microbial communities profoundly affect plant health, productivity, and responses to environmental stress. Thus, it is of great significance to comprehensively understand the response of root-associated microbes to planting years and the complex interactions between plants and rhizosphere microbes under long-term cultivation. Therefore, four rabbiteye blueberries (Vaccinium ashei Reade) plantations established in 1988, 2004, 2013, and 2017 were selected to obtain the dynamic changes and assembly mechanisms of rhizosphere microbial communities with the increase in planting age. Rhizosphere bacterial and fungal community composition and diversity were determined using a high-throughput sequencing method. The results showed that the diversity and structure of bacterial and fungal communities in the rhizosphere of blueberries differed significantly among planting ages. A total of 926 operational taxonomic units (OTUs) in the bacterial community and 219 OTUs in the fungal community were identified as the core rhizosphere microbiome of blueberry. Linear discriminant analysis effect size (LEfSe) analysis revealed 36 and 56 distinct bacterial and fungal biomarkers, respectively. Topological features of co-occurrence network analysis showed greater complexity and more intense interactions in bacterial communities than in fungal communities. Soil pH is the main driver for shaping bacterial community structure, while available potassium is the main driver for shaping fungal community structure. In addition, the VPA results showed that edaphic factors and blueberry planting age contributed more to fungal community variations than bacterial community. Notably, ericoid mycorrhizal fungi were observed in cultivated blueberry varieties, with a marked increase in relative abundance with planting age, which may positively contribute to nutrient uptake and coping with environmental stress. Taken together, our study provides a basis for manipulating rhizosphere microbial communities to improve the sustainability of agricultural production during long-term cultivation.</p