2 research outputs found

    Nuts and seeds consumption impact on adolescent obesity: sex-specific associations from 2003 to 2018 National Health and Nutrition Examination Survey

    No full text
    The nutritional benefits and immunological advantages of consuming nuts and seeds are well-established. However, the link between nuts and seeds consumption and the susceptibility of being overweight or obese among adolescents is not clear. This study aims to explore this relationship in adolescents aged 12–19. Using a weighted multiple logistic regression model, we analysed data of the Food Patterns Equivalents Database and the U.S. National Health and Nutrition Examination Survey (NHANES) from 2003 to 2018. We found a significant association between nuts and seeds consumption and a reduced odds of being overweight or obese in females. Specifically, females who habitually consumed nuts and seeds had lower odds of being overweight or obese (OR = 0.55, 95% CI: 0.32–0.94). Additionally, we found an L-shaped relationship between nuts and seeds consumption and appropriate waist-to-height ratio in males. The findings suggest that nuts and seeds consumption may contribute to healthier physical development in adolescents.</p

    Data_Sheet_1_Effects of the synbiotic composed of mangiferin and Lactobacillus reuteri 1–12 on type 2 diabetes mellitus rats.docx

    No full text
    Many synbiotics are effective for the prevention and treatment of type 2 diabetes mellitus (T2DM). In the treatment of T2DM, synbiotics often regulate the composition of intestinal flora, which autoinducer-2 (AI-2) may play an important role. Whether the changes of intestinal flora are related to AI-2 during synbiotics treatment of T2DM is a topic worth studying. We elucidated the effects of synbiotic composed of mangiferin and Lactobacillus reuteri 1–12 (SML) on T2DM rats. Male Spraque-Dawley rats were injected intraperitoneally with streptozotocin (STZ) and randomly grouped. After that, biochemical parameters, intestinal flora, fecal AI-2, and intestinal colonization of L. reuteri were detected. The results showed that SML had a hypoglycemic effect and mitigated the organ lesions of the liver and pancreas. Also, SML regulated biochemical parameters such as short chain fatty acids (SCFAs), lipopolysaccharides (LPS), intercellular cell adhesion molecule-1 (ICAM-1), and tumor necrosis factor-α (TNF-α). On the other hand, the proportion of probiotics, such as Lactobacillus acidophilus, L. reuteri, Bifidobacterium pseudolongum, Lactobacillus murinus, and Lactobacillus johnsonii, were elevated by the treatment of SML. In addition, SML promoted the colonization and proliferation of L. reuteri in the gut. Another thing to consider was that AI-2 was positively correlated with the total number of OTUs sequences and SML boosted AI-2 in the gut. Taken together, these results supported that SML may modulate intestinal flora through AI-2 to treat T2DM. This study provided a novel alternative strategy for the treatment of T2DM in future.</p
    corecore