5 research outputs found

    C-Reactive Protein Causes Blood Pressure Drop in Rabbits and Induces Intracellular Calcium Signaling

    Get PDF
    Systemic diseases characterized by elevated levels of C-reactive protein (CRP), such as sepsis or systemic inflammatory response syndrome, are usually associated with hardly controllable haemodynamic instability. We therefore investigated whether CRP itself influences blood pressure and heart rate. Immediately after intravenous injection of purified human CRP (3.5 mg CRP/kg body weight) into anesthetized rabbits, blood pressure dropped critically in all animals, while control animals injected with bovine serum albumin showed no response. Heart rate did not change in either group. Approaching this impact on a cellular level, we investigated the effect of CRP in cell lines expressing adrenoceptors (CHO-α1A and DU-145). CRP caused a Ca(2+)signaling being dependent on the CRP dose. After complete activation of the adrenoceptors by agonists, CRP caused additional intracellular Ca(2+)mobilization. We assume that CRP interacts with hitherto unknown structures on the surface of vital cells and thus interferes with the desensitization of adrenoceptors

    Effect of Build Parameters on the Compressive Behavior of Additive Manufactured CoCrMo Lattice Parts Based on Experimental Design

    No full text
    Due to their high specific strength, toughness, and corrosion and wear resistance characteristics, CoCrMo alloys are widely used in different industries and applications: wind turbines and jet-engine components, orthopedic implants, dental crowns, etc. The aim of this paper is to investigate the effect of lattice parameters on the compressive behavior of laser powder bed fusion (LPBF) parts from CoCrMo material. Build orientation, volume fraction, and lattice type are chosen as input parameters or control factors, and compressive yield strength (σy), elastic modulus (E), and specific energy absorption are chosen as the output or performance parameters for optimization. The Taguchi experimental design method is used in the arrangement of lattice parameters during experimental studies. The level of importance of the lattice parameters on σy, E, and specific energy absorption is determined by using analysis of variance (ANOVA). At the same material volume fractions, Diamond specimens showed higher σy and specific energy absorption than Gyroid and Primitive specimens, except σy at 0.4 volume fraction, where a Gyroid specimen showed the best result. The experimental and statistical results revealed that volume fraction and build orientation were found to be the major and minor effective factors, respectively, for all performance parameters (σy, E, and specific energy absorption). The effect of volume fraction on σy, E, and specific energy absorption was found to be 85.11%, 91.83%, and 57.71%, respectively. Lattice type was found to be the second-ranking factor, affecting σy, E, and specific energy absorption with contributions of 11.04%, 6.98%, and 39.40%, respectively. Multi objective optimization based on grey relation analysis showed that a Diamond specimen with 0.4 volume fraction and 45° build orientation was the best parameter set for the investigated performance outputs

    Specific Removal of C-Reactive Protein by Apheresis in a Porcine Cardiac Infarction Model

    No full text
    Background: C-reactive protein (CRP) is a possible causative factor of the destructive processes observed during the weeks after myocardial infarction. Methods: We developed a clinically relevant animal model including the removal of CRP from blood plasma utilizing a specific CRP adsorber and the visualization of the infarct scar in the living animal by cardiovascular magnetic resonance imaging as a tool to investigate the impact of CRP after acute myocardial infarction. Results: We describe the facets of this model system and kinetics of clinical blood parameters like CRP and troponin. In addition, we demonstrate the potency of CRP apheresis reducing CRP levels by _ 70% in the established treatment system. Conclusion: We showed for the first time that it is possible to conduct apheresis at the following 2 days after acute myocardial infarction in a porcine infarction model and to analyze the infarct by cardiovascular magnetic resonance imaging at day 1 and 14
    corecore