76 research outputs found

    Massive particles' Hawking radiation via tunneling from the G.H Dilaton black hole

    Get PDF
    In the past, Hawking radiation was viewed as a tunneling process and the barrier was just created by the outgoing particle itself. In this paper, Parikh's recent work is extended to the case of massive particles' tunneling. We investigate the behavior of the tunneling massive particles from a particular black hole solution-G.H Dilaton black hole which is obtained from the string theory, and calculate the emission rate at which massive particles tunnel across the event horizon. We obtain that the result is also consistent with an underlying unitary theory. Furthermore, the result takes the same functional form as that of massless particles.Comment: 6 pages, no figure, revtex

    On the Quantum Mechanics for One Photon

    Full text link
    This paper revisits the quantum mechanics for one photon from the modern viewpoint and by the geometrical method. Especially, besides the ordinary (rectangular) momentum representation, we provide an explicit derivation for the other two important representations, called the cylindrically symmetrical representation and the spherically symmetrical representation, respectively. These other two representations are relevant to some current photon experiments in quantum optics. In addition, the latter is useful for us to extract the information on the quantized black holes. The framework and approach presented here are also applicable to other particles with arbitrary mass and spin, such as the particle with spin 1/2.Comment: 15 pages, typos corrected, references added, corrections and improvements made owing to the anonymous referee's responsible and helpful remarks, accepted for publication in Journal of Mathematical Physics:

    Massive uncharged and charged particles' tunneling from the Horowitz-Strominger Dilaton black hole

    Get PDF
    Originally, Parikh and Wilczek's work is only suitable for the massless particles' tunneling. But their work has been further extended to the cases of massive uncharged and charged particles' tunneling recently. In this paper, as a particular black hole solution, we apply this extended method to reconsider the tunneling effect of the H.S Dilaton black hole. We investigate the behavior of both massive uncharged and charged particles, and respectively calculate the emission rate at the event horizon. Our result shows that their emission rates are also consistent with the unitary theory. Moreover, comparing with the case of massless particles' tunneling, we find that this conclusion is independent of the kind of particles. And it is probably caused by the underlying relationship between this method and the laws of black hole thermodynamics.Comment: 6 pages, no figure, revtex 4, accepted by Int. J. Mod. Phys

    Protein/polysaccharide intramolecular electrostatic complex as superior food-grade foaming agent

    Get PDF
    High-performance foaming agents are widely required in the food industry. In this study, the relationship between electrostatic interaction of whey protein isolate (WPI)/alginate (ALG) and the resultant foaming properties were investigated systematically. The phase diagram of WPI/ALG was established in terms of protein/polysaccharide mixing ratio (r) and pH. The results show that the foaming capacity of WPI/ALG complexes is almost the same across different regions of the phase diagram, while the foam stability varies significantly. At pHs 7.0 and 0.5 where no electrostatic complexation occurs, the foam stability is found to decrease monotonically with decreasing r. At pH 4.0 and particular mixing ratios, i.e., r = 1 and 2, intramolecular soluble complexes are formed and the particular WPI/ALG complexes yield the best foam stability, as compared to other electrostatic complexes or individual components. The half-life (t1/2) of the foams stabilized by the intramolecular electrostatic complexes is as long as 4000 s at a very low WPI/ALG concentration of 0.1% w/w. The foaming properties are in line with the foam viscosity, interfacial adsorption behavior and microstructures of the complexes observed at the air-water interface. This demonstrates that the protein/polysaccharide intramolecular electrostatic complex, more specifically at the stoichiometry, could potentially act as a superior foaming agent in the food industry

    Effect of arabinogalactan protein complex content on emulsification performance of gum arabic

    Get PDF
    The emulsification properties of the standard (STD), matured (EM2 and EM10) and fractionated gum arabic samples via phase separation induced molecular fractionation were investigated to find out how the content of arabinogalactan protein (AGP) complex affects the resulting emulsion properties. Phase separation and the accompanying molecular fractionation were induced by mixing with different hydrocolloids including hyaluronan (HA), carboxymethyl cellulose (CMC), and maltodextrin (MD). Increase of AGP content from 11 to 28% resulted in the formation of emulsions with relatively smaller droplet sizes and better stability. Further increase in the AGP content to 41% resulted in the formation of emulsions with larger droplets. In spite of the larger droplets sizes, these emulsions were extremely stable. In addition, the emulsions prepared with GA higher AGP content better stability in the presence of ethanol. The results indicate that AGP content plays a vital role in emulsion stability and droplet size
    corecore