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Abstract: High-performance foaming agents are widely required in the food industry. In this study, 

the relationship between electrostatic interaction of whey protein isolate (WPI)/alginate (ALG) and 

the resultant foaming properties were investigated systematically. The phase diagram of WPI/ALG 

was established in terms of protein/polysaccharide mixing ratio (r) and pH. The results show that the 

foaming capacity of WPI/ALG complexes is almost the same across different regions of the phase 

diagram, while the foam stability varies significantly. At pHs 7.0 and 0.5 where no electrostatic 

complexation occurs, the foam stability is found to decrease monotonically with decreasing r. At pH 

4.0 and particular mixing ratios, i.e., r = 1 and 2, intramolecular soluble complexes are formed and 

the particular WPI/ALG complexes yield the best foam stability, as compared to other electrostatic 

complexes or individual components. The half-life (t1/2) of the foams stabilized by the intramolecular 

electrostatic complexes is as long as 4000 s at a very low WPI/ALG concentration of 0.1% w/w. The 

foaming properties are in line with the foam viscosity, interfacial adsorption behavior and 

microstructures of the complexes observed at the air-water interface. This demonstrates that the 

protein/polysaccharide intramolecular electrostatic complex, more specifically at the stoichiometry, 

could potentially act as a superior foaming agent in the food industry. 

Keywords: Intramolecular Electrostatic Complex, Phase Diagram, Whey Protein Isolate, Alginate, 

Foam Capacity, Foam Stability
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1. Introduction

Foam is universally present in our daily life and it plays a crucial role in various applications such 

as foods, detergents, pharmaceuticals, cosmetics, ultra-light materials and fire-fighting agents etc 

(Zang, et al., 2018). Foam is particularly common and important in the food industry, and is one of 

the most vital ingredients in some specific food products, owing to its ability to provide special 

structures, appearance and tastes (Dickinson, 2010; van Kempen, Schols, Van, & Sagis, 2013). 

These include bread, sponge cakes, ice creams, mousses and chocolates(Langevin, et al., 2005). 

Foam structures are usually stabilized by surfactants, proteins, fats and even alcohols, and the 

stability of foams is characterized by their half-life. Long-life foams which normally last 50 minutes 

or longer (Piazza, Gigli, & Bulbarello, 2008) are particularly useful for aerated products in the food 

industry due to their ability of maintaining desired appearance of foods (Raikos, Campbell, & Euston, 

2007). Therefore, all-natural, green-label and healthy foaming agents with superior performance can 

make great contribution to the food industry.

Proteins represent the major category of natural foaming agents in the food industries (Hill & 

Eastoe, 2017). Proteins typically used for foaming purposes include β-lactoglobulin (Dombrowski, 

Gschwendtner, & Kulozik, 2017; Peng, Yang, Li, Tang, & Li, 2017), whey protein (Oboroceanu, 

Wang, Magner, & Auty, 2014), egg white protein (Mitie S. Sadahira, Rodrigues, Akhtar, Murray, & 

Netto, 2016) and wheat gluten protein (Wouters, et al., 2017), etc. However, some proteins have 

certain limitations either in foam capacity or foam stability, which cannot meet the requirements of 

the increasingly fastidious food industry. For instance, native whey proteins showed inferior foam 

capacity and stability at different pHs and concentrations when compared with denatured whey 

proteins (Oboroceanu, et al., 2014). For this reason, continuous effort has been made to seek for 

 

 

 

Journal Pre-proof



4

methodologies that improve the foaming properties of food proteins. Experimental factors, such as 

temperature (Z. Wan, Yang, & LM, 2016), pH (Peng, et al., 2017), concentration (Oboroceanu, et al., 

2014), and ionic strength (Akkermans, Goot, Venema, Linden, & Boom, 2008), were reported to 

influence the foaming properties. For example, Oboroceanu et al. (2014) found that whey protein 

isolate fibrils formed at lower pH and higher temperature exhibited greater foaming capacity and 

stability than the native protein. Peng et al. (2017) found that β-lactoglobulin amyloid fibrils had 

better foam capacity at pH = 7-8 than at other pHs. However, when the pH was close to its 

isoelectric point, the foam generated by the β-lactoglobulin amyloid fibrils gave the highest stability 

due to the lower electrostatic repulsion and hence a tightly packaged adsorption layer at the air-water 

interface.

The foaming properties of proteins can also be improved by combination with polysaccharides 

(Jarpa-Parra, Tian, Temelli, Zeng, & Chen, 2016) since protein-polysaccharide complexation at the 

air/water interface efficiently enhances the foam stability (Miquelim, Lannes, & Mezzenga, 2010). 

Proteins and polysaccharides can form complexes of different states at various pHs and mixing ratios. 

These include individual soluble polymers, intramolecular soluble complexes, intermolecular soluble 

complexes and intermolecular insoluble complexes (Li, Fang, Al-Assaf, Phillips, Yao, et al., 2012), 

which could influence the foaming properties of proteins to different degrees. In recent years, the 

influence of polysaccharides on protein foaming properties has been investigated extensively 

(Narchi, Vial, & Djelveh, 2009; Juan Miguel Rodríguez Patino & Pilosof, 2011; M. S. Sadahira, et 

al., 2015; van den Berg, Jara, & Pilosof, 2015). Most of the studies were focused on the effects of 

protein-polysaccharide interactions at certain pHs (Ruíz Henestrosa, Carrera-Sánchez, & Patino, 

2008) or the type and concentration of polysaccharides (Mitie S. Sadahira, et al., 2016). For example, 

Jarpa-Parra et al. (Jarpa-Parra, et al., 2016) demonstrated that lentil legumin-like proteins exhibited a 
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higher foam stability in the presence of guar gum, xanthan gum and pectin at pH 5.0 than pH 3.0 and 

7.0. Moreover, the polysaccharides were different in terms of their effects. 

Our previous study has investigated the emulsifying performance of different types of 

protein-polysaccharide complexes and demonstrated that the intramolecular soluble complexes could 

greatly improve the stability of emulsions due to the cooperative adsorption of protein and 

polysaccharide at the oil-water interface and the resulting thick interfacial adsorption layer around 

the droplet surface (Li, Fang, Al-Assaf, Phillips, & Jiang, 2012). The formation and stabilization of 

foams are also expected to closely relate with the interfacial adsorption of foaming agents, although 

not exactly the same to the case of emulsion stabilization (Foegeding, Luck, & Davis, 2006). In view 

of this, we herein investigate systematically the foams stabilized by different types of 

protein-polysaccharide electrostatic complexes, with particular emphasis on the intramolecular 

soluble complexes. Many studies demonstrate that whey protein isolate (WPI) can be used as an 

effective foaming agent to improve the quality of foamed foods such as texture and volume (Davis & 

Foegeding, 2004; Kuropatwa, Tolkach, & Kulozik, 2009; Vaclavik & Christian, 2008). Alginate 

(ALG) is a linear anionic polysaccharide (Draget, Phillips, & Williams, 2009), and has been widely 

used in the pharmaceutical and food industries (Stender, et al., 2018). In the work, WPI and ALG are 

selected to produce different types of electrostatic complexes according to a phase diagram, and the 

resultant foaming properties are comparatively studied by measuring foaming capacity and stability. 

2. Material and methods

2.1 Materials
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Whey protein isolate (WPI) BiPRO® (98% w/w) mainly consisting of 65% β-lactoglobulin, 25% 

α-lactoglobulin and 8% bovine serum albumin was kindly provided by Davisco Foods International 

Inc., (Le Sueur, MN, USA). The molecular weight and mean square radius of gyration (Rg) of WPI 

are 2.0 104 Da and 11 nm, respectively. Sodium alginate (ALG) with a weight-average ×  

molecular mass of Mw = 2.3 105 Da and Rg = 78.8 nm (100% w/w) was obtained from FMC ×  

BioPolymer (Norway). D-glucono-δ-lactone (GDL) was purchased from Aladdin Chemistry (China). 

All other chemicals were of analytical grade. Ultrapure water of Milli-Q system (18.3 MΩ.cm) was 

used for sample preparation.

2.2. Preparation of protein/polysaccharide mixtures

Sodium alginate was purified by precipitation using absolute ethyl alcohol, followed by 

re-dissolution, dialyzing and freeze-drying. Stock solutions of WPI (0.1% w/w) and ALG (0.1% w/w) 

were prepared by dissolving appropriate amount of WPI and ALG, respectively, in Millipore water. 

The stock solutions were mixed at different proportions under magnetic stirring to yield different 

mixing ratios of WPI/ALG by weight. WPI, ALG and WPI/ALG mixtures at pHs = 0.5, 4.0 and 7.0 

were used for further study of foaming properties. The pH was adjusted using HCl (1 M) and NaOH 

(1 M).

2.3. Zeta potential measurements

ζ-potential within the pH range of 2.0-8.0 were measured using a Zetasizer Nano-ZS apparatus 

(Malvern Instruments, UK) equipped with an MPT-2 pH autotitrator. The apparatus was fixed with a 

4 mW He/Ne laser emitting at 633 nm (Yao, et al., 2016). ζ potential was determined by measuring 

the actual electrophoretic mobility UE of charged particles via laser Doppler velocimetry at an angle 

 

 

 

Journal Pre-proof



7

of 17° according to the equation (Li, Fang, Al-Assaf, Phillips, Yao, et al., 2012):

ζ = 3UE/2 (Ka)              (1)                          𝑓

where  is the dielectric constant and  is the viscosity of the medium. (Ka) is the Henry function 𝑓

which is close to 1.5 under the Smoluchowski approximation.

2.4. Construction of phase diagram

The phase diagram of WPI/ALG mixtures was constructed at various mixing ratios by measuring 

light scattering and turbidity during in situ acidification using GDL, as described previously (Li, 

Fang, Al-Assaf, Phillips, Yao, et al., 2012; Mekhloufi, Sanchez, & Renard, 2005; F Weinbreck, De, 

Schrooyen, & de Kruif, 2003). Briefly, 10 grams of 0.1% WPI/ALG solution was adjusted to pH 9.0, 

and then mixed vigorously with different amounts of GDL ranging from 0.25 to 2.0 % w/w to 

initialize in situ acidification (Li, Fang, Al-Assaf, Phillips, Yao, et al., 2012). The change of pH as a 

function of time was recorded using an Orion 4 Star multifunctional pH meter (Thermo Scientific 

Corporation) at 25 °C. The pH-time curves were related to the subsequent time-dependent light 

scattering intensity and turbidity measurements to obtain the information on structural transitions as 

a function of pH (Li, Fang, Al-Assaf, Phillips, Yao, et al., 2012).

Light scattering was measured on a Zetasizer apparatus (Malvern Instruments, UK). The average 

scattered light intensity at 173° (I173, counts s-1) was recorded every 30 s for 5 hours during in situ 

acidification at 25 °C. Turbidity measurement was carried out on a UV/visible spectrophotometer 

(TU-1900, PERSEE, China) at a wavelength of 500 nm. The turbidity (τ, cm-1) was recorded every 

30 s for 5 hours and was calculated according to the equation (Yao, et al., 2016):

 = (1/L) (I0/It)               (3)𝜏  ln 
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where L is the optical path length (cm), I0 and It are the incident and transmitted light intensity, 

respectively. Since the GDL-induced acidification could not bring pH below 2.0, 10 M HCl was 

used instead to decrease pH from 6.0 to 1.0 in parallel experiments.

2.5. Analysis of foaming properties

Dynamic foam properties (foam capacity and foam stability) of WPI/ALG mixtures were analyzed 

using a dynamic foam analyzer DFA100 (KRÜSS GmbH, Germany). Changes in total height and 

foam structure over time were measured simultaneously. For each measurement, a fixed volume of 

WPI, ALG or WPI/ALG (50 mL) was foamed to a maximum height of 180 mm by sparging air (0.3 

L/min) in a tempered glass column with a prism comprised over the whole length of the column 

(height = 250 mm; inner diameter = 40 mm) through a porous filter plate (16-40 μm). 

Two-dimensional images of foams for each sample at a column height of 80 mm after foaming were 

taken by a CCD camera that was attached to the side of prism of the column. The detailed principle 

for monitoring the foam structure can be found from Oetjen et al (Oetjen, Bilke-Krause, Madani, & 

Willers, 2014). The results of high contrast images were analyzed by the Foam Analysis Software. In 

general, dynamic foam analyzer consisted of a foam generation device and a computer which served 

as the data acquisition and monitoring unit. Foam capacity was defined as follows:

Foam Capacity = V (Foam, tmax) / V (Gas)             (4)

where V (Foam, tmax) is the maximum foam volume reached at time tmax, and V (Gas) is the volume 

of gas consumed until tmax. The foam stability (FS) was characterized by the half-life of foam (t1/2), 

i.e., the time over which the foam height is reduced to one-half of its initial value.

2.6. Rheological measurements
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The viscosity () of the WPI/ALG solutions with different protein/polysaccharide ratio r (at a 

fixed total biopolymer concentration of 0.1% w/w) was measured at 25 °C using a Haake 

RheoStress 6000 rheometer (Thermo Fisher Scientific, USA) with a parallel-plate geometry. The 

plate diameter and the gap between top and bottom plates are 35 mm and 1.0 mm, respectively. 

The shear rate range investigated was from 0.01 to 100 s-1. 

2.7. Surface tension and dilatational rheology

The surface tension and dilatational modulus (E) of WPI/ALG at the air-water surface were 

measured through oscillation mode by a drop profile tensiometer (Teclis Tracker, France). The 

experiments were carried out at 25 ± 0.1°C controlled by a water bath circulation. A thoroughly 

cleaned syringe with a U-shaped needle was submerged into a quartz sample cell containing WPI, 

ALG or WPI/ALG solution (0.1% w/w). The sample cell was situated between a light source and a 

high-speed charge couple device (CCD) camera. A bubble with a volume of 5 μL (A) was produced 

in the WPI, ALG or WPI/ALG solution at the tip of the needle. The surface area of the bubble was 

sinusoidally fluctuated with time (t) at an oscillation frequency of 0.05 Hz and a relative amplitude 

of 10% (∆A/A) for a duration of 3.5 h. The bubble profile was recorded by the CCD camera and 

analyzed according to the equation derived from Laplace equation: (Castellani, Al-Assaf, Axelos, 

Phillips, & Anton, 2010; Castellani, Gaillard, et al., 2010; Castellani, Guibert, et al., 2010)

        
1
𝑥

𝑑
𝑑𝑥

(x sin 𝜃) =
2
𝑏

− 𝑐𝑧
                   (5)

where x and z are the Cartesian coordinates at any point on the drop profile, b is the curvature radius 

at the drop apex, θ is the angle of the tangent to the drop profile and c is the capillarity constant 

gΔρ/γ (Δρ is the density difference between air and solution, γ is the interfacial tension and g is the 
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acceleration of gravity, respectively). The surface dilatational modulus E was calculated as follows:

 E = A(∆γ) / ∆A                             (6)

where A and ∆A are the initial surface area of the bubble and its oscillation amplitude.

2.8. Atomic force microscopy (AFM) 

The microstructures of WPI, ALG or WPI/ALG at the air-water interface were visualized using a 

MuitiMode 8 scanning probe microscopy (Bruker, USA) in Peak Force Tapping Mode in air. AFM 

images were recorded with a silicone cantilever (driving frequency 70 kHz; spring constant 0.4 N/m). 

AFM samples were prepared according to a modified Langmuir-Schaefer method to transfer 

interfacial films on to freshly cleaved micas (Jordens, Isa, Usov, & Mezzenga, 2013). WPI and ALG 

stock solutions of 0.01 mg/mL were prepared by dispersing the respective powders in Milli-Q water 

under magnetic stirring overnight and then mixed at different weight ratios at pH 4.0 and pH 7.0. 10 

mL of the mixed solutions was transferred to a flat glass dish (depth = 15 mm and inner diameter = 

50 mm) and allowed to stand for an hour. A freshly cleaved mica nipped using a tweezer was 

brought down to contact with the air-water interface and then withdrawn rapidly again. The mica 

was dried for 12 hours under ambient condition prior to AFM observation. 

2.9. Statistical analysis

Independent experiments for each sample were repeated in triplicate. The average values and the 

standard deviation (SD) are reported using descriptive statistical analysis, which was performed 

through Excel 2013.

3. Results and discussion
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3.1. Zeta potential of WPI/ALG mixtures 

ζ-potential of WPI/ALG with varying protein/polysaccharide ratios (r) and as a function of pH is 

shown in Fig. 1a. The WPI solution shows an isoelectric point (IEP) of 4.61, which agrees with the 

reported value in the literature (F Weinbreck, et al., 2003). The ALG solution attains a saturated ζ 

value of -50 mV at pH > 6.0, and approaches zero when the pH is reduced to 2.0 due to the 

protonation of carboxylic groups around their pKa (Li, Fang, Al-Assaf, Phillips, Yao, et al., 2012). 

For WPI/ALG mixtures, decreasing r results in a shift of ζ curves to lower pHs and therefore a lower 

IEP for WPI/ALG mixtures than pure WPI. Fig. 1b plots the IEP values of the WPI/ALG mixtures 

against r. Obviously, IEP shows a clear transition around r = 1.0, and is nearly constant at r < 1.0. 

This suggests that the maximum stoichiometry of WPI/ALG is approximately 1.0. This weight ratio 

indicates that one gram of ALG to a maximum can interact with WPI of the same weight (Li, Fang, 

Al-Assaf, Phillips, Yao, et al., 2012). In other words, when r > 1.0, the possible binding sites of 

ALG are fully occupied by WPI molecules (Vinayahan, Williams, & Phillips, 2010). When r < 1.0, 

the ALG is in excess, and the free carboxylic groups unoccupied by WPI dominate the IEP of the 

mixtures through a protonation mechanism. 

(Fig. 1. here)

3.2. Phase diagram of WPI/ALG 

In order to construct the phase diagram of WPI/ALG mixtures, light scattering and turbidimetry 

were employed to monitor the structure transitions during GDL-induced acidification (Li, Fang, 

Al-Assaf, Phillips, Yao, et al., 2012). Fig. 2a takes r = 1 as an example to illustrate the evolution of 

turbidity at 500 nm (τ), scattered light intensity at 173° (I173) as a function of pH. Two characteristic 
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pHs can be identified from the evolution profiles: pHc as the onset increase of I173 and pHφ as the 

onset increase of τ (Mekhloufi, et al., 2005; Ye & Flanagan, 2006). As can be seen in Fig. 2a, I173 

and τ keep constant when pH > pHc and I173 starts to increase at pH < pHc.  When pHφ < pH < pHc, τ 

remains unchanged, but starts to ascend dramatically at pHφ. pHc has been regarded as an indication 

of the formation of soluble complexes and pHφ is associated with the formation of insoluble 

complexes which eventually leads to phase separation (Mekhloufi, et al., 2005; F Weinbreck, et al., 

2003; Fanny Weinbreck, Nieuwenhuijse, Robijn, & de Kruif, 2004; Ye, et al., 2006). This is because 

I173 is more sensitive to the size change at the molecular level while τ probes the size change at the 

microscopic level (Li, Fang, Al-Assaf, Phillips, Yao, et al., 2012; Mekhloufi, et al., 2005).

(Fig. 2. here)

To analyze the structure transition at lower pHs where the GDL acidification cannot reach, HCl 

addition was used to acidify pH until below pH 1.0 meanwhile measuring the turbidity change (Li, 

Fang, Al-Assaf, Phillips, Yao, et al., 2012). As can be seen in Fig. 2a, further decreasing pH by HCl 

leads to a reduction in turbidity. At pH < pHd, the turbidity starts to level off, but does not disappear 

completely. This is different from the system of bovine serum albumin/sugar beet pectin in which 

the turbidity approached almost zero at pH < pHd (Li, Fang, Al-Assaf, Phillips, Yao, et al., 2012). 

The reason could be that such low pHs cause the protonation of carboxylic groups, and induce the 

aggregation and microgel formation of ALG, thus giving rise to considerable turbidity. Nevertheless, 

the transition at pHd is still associated with the dissociation of WPI/ALG complexes and the 

subsequent formation of ALG microgels due to the protonation of carboxylic groups (Li, Fang, 

Al-Assaf, Phillips, Yao, et al., 2012; Vinayahan, et al., 2010; Ye, et al., 2006).

Based on the pHc, pHφ and pHd values identified at different mixing ratios, the phase diagram of 

WPI/ALG mixtures was constructed in a pH-composition coordinate as shown in Fig. 2b. Both pHc 
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and pHφ have a sigmoidal dependence on r, while the value of pHd does not change much with r. At 

lower mixing ratios r, pHc is significantly smaller than the IEP of WPI (indicated by the dashed line). 

Our previous study proved that between IEP and pHc electrostatic complexation already occurs 

between WPI and ALG, leading to the formation of intramolecular soluble complexes (Li, Fang, 

Al-Assaf, Phillips, Yao, et al., 2012). The IEP, pHc, pHφ and pHd divide the phase diagram into five 

regions, and according to the previous assignments they correspond to: (I) a stable region of mixed 

individual soluble polymers, (II) a stable region of intramolecular soluble complexes, (III) a 

metastable region of intermolecular soluble complexes, (IV) an unstable region of intermolecular 

insoluble complexes and (V) a second stable region of mixed individual soluble polymers, 

respectively (Li, Fang, Al-Assaf, Phillips, Yao, et al., 2012; Mekhloufi, et al., 2005; Seyrek, Dubin, 

Tribet, & Gamble, 2003). Since the intramolecular soluble complexes represent a stable state of the 

electrostatic complexation as demonstrated previously (Yao, et al., 2016), special emphasis will be 

put on their foaming properties in the following discussion.

3.3. Foaming properties

The foaming properties of WPI/ALG mixtures were investigated in terms of the phase diagram 

shown in Fig. 2b. WPI/ALG mixtures at pH 7.0, 4.0 and 0.5 and with varying mixing ratio from 0.1 

to 32 were selected to evaluate the foam capacity and stability. The experimental conditions ensure a 

complete coverage of the different phase regions in the phase diagram. The foam capacity was 

assessed by the ratio of the maximum foam volume to the volume of gas consumed for foaming 

therein. Fig. 3 compares the foaming capacity of WPI/ALG mixtures of different mixing ratios at 

pHs 7.0, 4.0 and 0.5. At a fixed total biopolymer concentration of 0.1% w/w and higher mixing 

ratios, WPI/ALG mixtures exhibit comparable foam capacity with the pure WPI and among the three 

 

 

 

Journal Pre-proof



14

different pHs. At pH 7.0 and 0.5 where no electrostatic complexation occurs, the foam capacity of 

WPI/ALG mixtures starts to decline significantly at r < 0.1 and 0.25, respectively. This is because 

the foam capacity is mainly determined by the amphiphilic protein component and it would decrease 

extensively when the amount of protein is reduced to a certain level at lower mixing ratio. At pH 4.0 

where electrostatic complexation takes place, the foam capacity shows a marked decrease starting at 

r < 1. This critical r value coincides with the maximum stoichiometry of WPI/ALG as revealed in 

Fig. 1b, and is considerably larger than those observed for pH 7.0 and 0.5. A possible interpretation 

is that the electrostatic complexation between WPI and ALG reduces the amount of free protein that 

is required for effective foaming. Only when the mixing ratio is larger than the stoichiometry, that is, 

r > 1, does the presence of excessive free protein confer a good foam capacity. Overall, the results 

indicate that the addition of ALG, either in free state or complexed with WPI, does not lead to an 

improvement of the foam capacity of WPI. This is due to the hydrophilic nature of ALG, and is in 

line with the results obtained for other protein/polysaccharide systems (Jarpa-Parra, et al., 2016).

(Fig. 3. here)

Nevertheless, the foam stability was found to be significantly altered by the presence of ALG. 

Foam stability was evaluated by measuring the decay of the foam height over time and was 

quantified by the foam half-life, i.e., the time over which the foam height is reduced to one-half of its 

initial value. Fig. 4a exemplifies the decay of foam height as a function of time for WPI/ALG at pH 

4.0 and various mixing ratios. Due to the drainage of the liquid, the foam height continues to 

decrease. It is clear that at particular mixing ratios, i.e., r = 1 and 2, the foams show the slowest 

decay with time. When r < 1, the foam decay is accelerated with decreasing mixing ratio. Fig. 4b 

compares the foam half-life for WPI/ALG at different pHs and mixing ratios. At pHs 7.0 and 0.5 

where no electrostatic complexation occurs, the foam half-life decreases monotonically with 
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decreasing r. This is readily understood, as the decreasing amount of free protein results in 

insufficient coverage of the water-air interface by WPI and thus the destabilization of the foams. 

Additionally, the foam half-life at pH 0.5 seems to be slightly shorter than that at pH 7.0. This could 

be caused by the deamidation of amino acids and hydrolysis of peptide bonds of WPI at pH 0.5, 

which alter the covalent structure and amphiphilicity of WPI and have a detrimental effect on foam 

stability.

(Fig. 4. here)

At pH 4.0 where electrostatic complexation takes place between WPI and ALG, the foam half-life 

generally decreases with decreasing r, but goes through a substantial maximum around r = 1. The 

foam half-life at r = 1 and 2 is as long as 4000 s, which nearly doubles that of pure WPI even if the 

protein concentration is reduced to only the half. This suggests clearly an improvement of the foam 

stability by electrostatic complexation with ALG. Intriguingly, the maximum foam stability occurs at 

r =1 and 2, which is close to the stoichiometry of WPI/ALG and falls within the stable region of 

intramolecular soluble complexes, as shown in the phase diagram (Fig. 2b). This manifests an 

extraordinary foam-stabilizing effect of the intramolecular soluble complex around its stoichiometry. 

For intramolecular complex with r < 1, because of the deviation from the stoichiometry, excessive 

ALG renders the complexes highly negatively charged, which impairs their adsorption and structural 

arrangement at the air-water interface due to strong electrostatic repulsion (Mitie S. Sadahira, et al., 

2016). This results in a decreased foam stability at lower mixing ratio. On the other hand, for r > 2, 

the WPI/ALG mixtures enter into the metastable region of intermolecular soluble complexes or the 

unstable region of intermolecular insoluble complexes (Fig. 2b). The formation of unstable 

intermolecular complexes of WPI/ALG may cause the destabilization of the air-water interface since 

the intermolecular complexes form insoluble complexes and sediment, thus reducing the interfacial 
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properties and the viscosity of the complex system (as discussed below), and likely causing the 

coalescence of air bubbles. This explains the lower foam stability observed at higher mixing ratio.

(Fig. 5. here)

The time evolution of foam structure was monitored by a CCD camera during foam formation and 

decay (Fig. 5). At the very beginning, e.g., 30s, all the foams formed at pH 7.0, 4.0 and 0.5 contain 

nearly monodisperse and small spherical air bubbles. With the elapse of time, the bubbles grow in 

size due to destabilizations such as disproportionation and coalescence. As the liquid continues to 

drain, the bubbles become compressed and start to pack together in a polyhedral shape (Zhili Wan, 

Yang, & Sagis, 2016). Comparison between pH 7.0 and 0.5 shows that the foams formed at pH 0.5 

have relatively smaller initial bubble size, which however seem to grow more rapidly. At 3000s, the 

foams formed at pH 0.5 dry out completely, while the foams at pH 7.0 can partially retain the 

polyhedral structure. This means that the foams formed at pH 7.0 are more resistant to foam drainage 

than those at pH 0.5, indicating a slightly higher foam stability. Great difference can be seen at pH 

4.0 where WPI and ALG complex with each other via electrostatic interaction. At particular mixing 

ratios, i.e., r = 1 and 2, the bubbles have a smaller initial size, and grow relatively more slowly in 

comparison with the bubbles formed at other mixing ratios. Moreover, most of the bubbles can 

remain spherical even at 3000 s, with only a few in the polyhedral shape. This is in clear contrast 

with the foams formed at pH 7.0 and 0.5, and indicates a much stronger resistance to foam drainage 

(Zhili Wan, et al., 2016). The foam microstructures confirm that the intramolecular soluble complex 

around its stoichiometry possesses an excellent ability of stabilizing foams. 

3.4.  Viscosity

Foam drainage, one of the important factors influencing the foam stability, is deeply related to 

 

 

 

Journal Pre-proof



17

viscosity of continuous phase of foam (Koehler, Sascha Hilgenfeldt, & Stone, 2000). Therefore, the 

viscosity profiles of WPI/ALG mixtures with varying r and at different pHs as a function of shear 

rate are measured and displayed in Fig. 6. The viscosity of all the samples presented a shear thinning 

behavior with the increase of shear rate from 0.01 to 100 s-1, which has been observed in other 

protein/polysaccharide (Jarpa-Parra, et al., 2016) or protein alone systems (Peng, et al., 2017; 

Ptaszek, 2013). However, the initial viscosity and the decrease rate of viscosity varied among 

different WPI/ALG mixtures. In Fig. 6a, ALG at pH 7.0 showed the lowest viscosity at low shear 

rate (< 6 s-1), while WPI exhibited the highest on the contrary. In general, the viscosity of WPI/ALG 

mixtures became lower with decreasing r. This viscosity change tendency implies that the viscosity 

is primarily influenced by WPI at pH 7.0, but the electrostatic repulsion between the biopolymer 

molecules becomes stronger at low r (Fig. 1a), leading to the decrease of viscosity (Peng, et al., 

2017). 

When pH is 4.0, as can be seen in Fig. 6b, ALG remains the smallest viscosity. Nevertheless, the 

intramolecular soluble polymers (r =1 and 2) and the intermolecular soluble polymers (r = 4) of 

WPI/ALG complexes at low shear rate (< 6 s-1) showed higher viscosities than pure ALG. This 

might be because the formation of even-distributed primary coacervates (intramolecular soluble 

polymers) or small scale aggregates (intermolecular soluble polymers), respectively. As r further 

increases to r = 16 where intermolecular insoluble polymers are formed, viscosity decreases as 

expected since sedimentation may occur during the rheological tests. This phenomenon was also 

observed for other protein/polysaccharide complex system (Jarpa-Parra, et al., 2016). For WPI/ALG 

complexes with lower r, the high content of negatively charged ALG still show lower viscosity than 

the other WPI/ALG complexes.

At pH 0.5, however, an opposite viscosity trend of WPI/ALG mixtures as a function of r is 
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observed compared to that at pH 7.0 (Fig. 6c). That is, ALG had the largest viscosity and the 

viscosity of WPI/ALG mixtures becomes lower as r increases. This is probably because aggregation 

and microgel formation of ALG at very low pH (Su, et al., 2018) which dominate the viscosity 

change of the WPI/ALG systems. 

(Fig. 6. here)

3.5.  Interfacial properties

The foaming properties of proteins are relevant to their adsorption at the air-water interface 

(Wouters, et al., 2017). Therefore, the interfacial behavior of the WPI/ALG mixtures with varying 

mixing ratios at the air-water interface was investigated to deeply understand their foaming 

properties. Fig. 7 shows the time evolution of the surface tension and surface dilatational modulus (E) 

for WPI/ALG mixtures at the air-water interface at pH 4.0 and 7.0, respectively. The adsorption at 

pH 0.5 could not be measured properly. This is because ALG at pH 0.5 would be and form 

aggregated sediments in the sample tank during measurement, leading to inaccurate results. Similar 

problem was encountered during the measurements of WPI/ALG at higher mixing ratio and pH 4.0, 

i.e., r > 4, where WPI/ALG form insoluble complexes (region IV in Fig. 2b), preventing accurate 

characterization of the interfacial adsorption behavior. 

(Fig. 7. here)

In Figs 7a and 7b, the surface tension of all the samples decreases with time, and tends to level off, 

implying the adsorption of WPI, WPI/ALG and even ALG to the air-water interface (Peng, et al., 

2017). However, the decay rate of the surface tension is different for different samples, which 

indicates the difference in diffusion and adsorption rate of the samples. As displayed in Fig. 7a, at 

pH 7.0, the decay rate of the surface tension for pure ALG is the slowest and the equilibrium value 
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of the surface tension is the highest. It suggests that the polysaccharide ALG is not as surface-active 

as the samples containing the protein WPI. This is related to the poor hydrophobicity of ALG, which 

leads to slow interfacial adsorption kinetics and a low surface activity. On the contrary, WPI 

displays the fastest decay of surface tension and the lowest equilibrium value at the late stage of the 

adsorption, suggesting a higher surface activity of WPI (Bals & Kulozik, 2003; Davis, et al., 2004; 

Oboroceanu, et al., 2014). Additionally, the surface tension for WPI/ALG mixtures with different 

mixing ratios is in between the values for ALG and WPI, and decreases with decreasing r. The 

results indicate that the surface activity of WPI/ALG is dominated by WPI at pH 7.0, where no 

electrostatic complexation occurs. 

At pH 4.0, as shown in Fig. 7b, ALG remains the slowest decrease rate and the highest 

equilibrium value of surface tension, implying a poor surface activity similar to that at pH 7.0. 

Interestingly, it was found that the WPI/ALG intramolecular soluble complex at r = 1, namely the 

stoichiometry, exhibits the lowest equilibrium surface tension and the fastest decay rate, in 

comparison with other mixtures and even pure WPI. This could be due to the fact that electrostatic 

complexation induces the partial denaturation of WPI, resulting in exposure of more hydrophobic 

regions of the protein and thus a higher surface activity (Cao, Li, Fang, Nishinari, & Phillips, 2016). 

Furthermore, the electrostatic complexation enhances the solubility of WPI due to increased 

electrostatic repulsion and promotes the cooperative adsorption of WPI and ALG on to the air-water 

interface, which give rise to a faster adsorption kinetics (Li, Fang, Al-Assaf, Phillips, & Jiang, 2012). 

The effects are the most pronounced at the stoichiometry r = 1. The deviation from the stoichiometry 

leads to either insufficient amount of proteins anchored to the interface (i.e., r < 1) or the 

metastable/unstable complexes that tends to aggregate/precipitate (i.e., r > 1). Neither of the 
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situations favors the adsorption of WPI/ALG onto to the air-water interface, leading to reduced 

surface activity.

Figs 7c and 7d show the corresponding surface dilatational modulus E of WPI/ALG mixtures at 

pHs 7.0 and 4.0, respectively. At pH 7.0, ALG exhibits the lowest E while WPI has the highest E. 

The E values for WPI/ALG mixtures with different mixing ratios are also in between those of pure 

WPI and ALG, and increase with increasing r. It implies that WPI at pH 7.0 forms the most 

viscoelastic surface film, and therefore should provide the highest foam stability. As r decreases, the 

viscoelasticity of the surface film formed by WPI/ALG mixtures declines. This explains the reduced 

foam stability as r decreases as observed in Fig. 4b and agrees with the results reported in literatures 

(Murray, 2011; J. M. Rodríguez Patino, Carrera, & Rodríguez Niño, 2008). At pH 4.0 (Fig. 7d), E is 

generally larger at higher r. However, exception is that the intramolecular soluble complexes at r = 1 

or 2 display the highest E values which outstands among other mixing ratios, e.g., r = 0.25, 0.5, 4 

and WPI as well. This similarly can be attributed to the cooperative adsorption of WPI and ALG at 

the air-water interface when intramolecular soluble complexes are formed, which leads to a thick 

and viscoelastic interfacial film at the air-water interface. The interfacial mechanical results are 

consistent with the maximum foam stability observed at r = 1 at pH 4.0 (Fig. 4b). It should be noted 

that the E values of the intramolecular soluble complexes at pH 4.0 and with r =1 and 2 are 

relatively lower than those of the mixtures at pH 7.0 with higher r, although the formers exhibit 

higher foam stability. This might be due to the fact that the foam stability is not always fully 

determined by the interfacial mechanical property (Wouters, et al., 2017), but also the rheological 

properties such as the viscosity of the continuous phase of the bubbles. As shown in Fig. 6b and 

discussed above, intramolecular soluble polymers (r = 1 and 2) exhibited higher viscosity, which 
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probably reduce the water drainage between the bubbles and improve the stability of the foams. 

(Koehler, et al., 2000).

3.6. Interfacial microstructures

The microstructures of the interfacial films formed by WPI/ALG mixtures at the air-water 

interface were visualized using AFM. Fig. 8 compares the interfacial microstructures of WPI and 

WPI/ALG at pH = 7.0 and 4.0 and with r = 1 and 0.5. The WPI at pH 7.0 exists in the form of small 

globular aggregates at the air-water interface (Fig. 8a), while at pH 4.0 WPI shows a slight tendency 

of aggregation and forms a relatively more homogenous film (Fig. 8d). This might be due to the 

higher zeta potential of WPI at pH 7.0, yielding a stronger electrostatic repulsion between WPI 

molecules at the interface. At pH 7.0 and r = 1 and 0.5, where no electrostatic complexation occurs, 

WPI/ALG mixtures exhibit a dispersed interfacial morphology in which the linear structure of ALG 

and globular structure of WPI seem to coexist (Figs. 8b and 8c). The structures however change 

significantly at pH 4.0 where intramolecular soluble complexes are formed between WPI and ALG 

(Figs. 8e and 8f). Association between WPI and ALG can be clearly visualized. In contrast with pH 

4.0 and r = 0.5, the mixture with r = 1 produces a thicker and more continuous network structure at 

the air-water interface. The interfacial structure formed by the former appears to be more dispersed. 

It indicates that the intramolecular soluble complex at its stoichiometry, i.e., r = 1, tends to produce a 

more homogenous and complete interfacial film at the air-water interface. This supports the results 

of viscosity shown in Fig. 6 and interfacial adsorption shown in Fig. 7 and the foam stability shown 

in Fig 4. The interfacial advantage of WPI/ALG intramolecular soluble complex at its stoichiometry 

is multifaceted, and includes: 1) high surface activity possibly due to the partial denaturation of WPI 

induced by electrostatic complexation; 2) high viscosity that retards the foam drainage rate; 3) 
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adsorption of WPI/ALG in a cooperative mechanism; 4) nearly electroneutrality that facilities the 

deposition and structural arrangement at the interface; 5) stable soluble complex that benefits the 

stabilization of the interface.

(Fig. 8. here)

4. Conclusions

The relationship between electrostatic interaction of WPI/ALG and the resulting foaming 

properties was investigated by constructing phase diagram, characterizing foam capacity and 

stability as well as visualizing interfacial microstructures. The results show that WPI/ALG 

complexes in different phase regions have similar foam capacity but significantly different foam 

stability. In the phase regions where no electrostatic complexation occurs, e.g., pH 7.0 and 0.5, the 

foam stability of WPI/ALG is mainly dominated by the protein component, and decreases with 

decreasing mixing ratio r. In the stable region of intramolecular soluble complexes, the electrostatic 

complexation between WPI and ALG yields the best foam stability, when the mixing ratio r is close 

to the stoichiometry, i.e., at r = 1 and 2. Under this particular condition, the half-life of the foams can 

be as long as 1 hour, nearly doubling that of pure WPI, even at a very low WPI/ALG concentration 

of 1mg/mL. Deviation from the particular phase region, however, leads to a degradation in foaming 

performance of WPI/ALG. The foaming properties are well supported by the results of viscosity and 

interfacial adsorption and microstructures, manifesting the interfacial advantage of the 

intramolecular soluble complexes. The study overall demonstrates an interesting approach to the 

stabilization of the air-water interface by protein/polysaccharide intramolecular electrostatic 

complex and their potential application in the food industry as superior foaming agent.

 

 

 

Journal Pre-proof



23

Acknowledgments

The research was supported by the grants from the National Natural Science Foundation of China 

(31671811, 31571797), the State Key Research and Development Plan “Modern food processing and 

food storage and transportation technology and equipment” (No. 2017YFD0400200), and the 

Science and Technology Commission of Shanghai Municipality (No.18JC1410801).

References  

Akkermans, C., Goot, A. J. V. D., Venema, P., Linden, E. V. D., & Boom, R. M. (2008). Properties 

of protein fibrils in whey protein isolate solutions: microstructure, flow behaviour and 

gelation. International Dairy Journal, 18(10-11), 1034-1042.

Bals, A., & Kulozik, U. (2003). Effect of pre-heating on the foaming properties of whey protein 

isolate using a membrane foaming apparatus. International Dairy Journal, 13(11), 903-908.

Cao, Y., Li, S., Fang, Y., Nishinari, K., & Phillips, G. O. (2016). Conformational transition of 

polyelectrolyte as influenced by electrostatic complexation with protein. Biomacromolecules, 

17(12), 3949-3956.

Castellani, O., Al-Assaf, S., Axelos, M., Phillips, G. O., & Anton, M. (2010). Hydrocolloids with 

emulsifying capacity. Part 2-adsorption properties at the N-hexadecane-water interface. Food 

Hydrocolloids, 24(2), 121-130.

Castellani, O., Gaillard, C., Vié, V., Al-Assaf, S., Axelos, M., Phillips, G. O., & Anton, M. (2010). 

Hydrocolloids with emulsifying capacity. Part 3 – adsorption and structural properties at the 

air–water surface. Food Hydrocolloids, 24(2), 131-141.

 

 

 

Journal Pre-proof



24

Castellani, O., Guibert, D., Al-Assaf, S., Axelos, M., Phillips, G. O., & Anton, M. (2010). 

Hydrocolloids with emulsifying capacity. Part 1 - emulsifying properties and interfacial 

characteristics of conventional (acacia senegal (L.) willd. var. senegal) and matured (acacia 

(sen) super gum™) acacia senegal. Food Hydrocolloids, 24(2), 193-199.

Davis, J. P., & Foegeding, E. A. (2004). Foaming and interfacial properties of polymerized whey 

protein isolate. Journal of Food Science, 69(5), 404-410.

Dickinson, E. (2010). Food emulsions and foams: stabilization by particles. Current Opinion in 

Colloid & Interface Science, 15(1), 40-49.

Dombrowski, J., Gschwendtner, M., & Kulozik, U. (2017). Evaluation of structural characteristics 

determining surface and foaming properties of β-lactoglobulin aggregates. Colloids & 

Surfaces A Physicochemical & Engineering Aspects, 516, 286-295.

Draget, K. I., Phillips, G. O., & Williams, P. A. (2009). Alginates. Handbook of Hydrocolloids, 

379-396.

Foegeding, E. A., Luck, P. J., & Davis, J. P. (2006). Factors determining the physical properties of 

protein foams. Food Hydrocolloids, 20(2-3), 284-292.

Hill, C., & Eastoe, J. (2017). Foams: From nature to industry. Adv Colloid Interface Sci, 247, 

496-513.

Jarpa-Parra, M., Tian, Z., Temelli, F., Zeng, H., & Chen, L. (2016). Understanding the stability 

mechanisms of lentil legumin-like protein and polysaccharide foams. Food Hydrocolloids, 

61, 903-913.

Jordens, S., Isa, L., Usov, I., & Mezzenga, R. (2013). Non-equilibrium nature of two-dimensional 

isotropic and nematic coexistence in amyloid fibrils at liquid interfaces. Nat Commun, 4(5), 

1917.

 

 

 

Journal Pre-proof



25

Koehler, S. A., Sascha Hilgenfeldt, & Stone, H. A. (2000). A generalized view of foam drainage:  

experiment and theory. Langmuir, 16(15), 6327-6341.

Kuropatwa, M., Tolkach, A., & Kulozik, U. (2009). Impact of pH on the interactions between whey 

and egg white proteins as assessed by the foamability of their mixtures. Food Hydrocolloids, 

23(8), 2174-2181.

Langevin, D., Saintjalmes, A., Marze, S., Cox, S., Hutzler, S., Drenckhan, W., Weaire, D., Caps, H., 

Vandewalle, N., & Adler, M. (2005). Hydrodynamics of wet foams.

Li, X., Fang, Y., Al-Assaf, S., Phillips, G. O., & Jiang, F. (2012). Complexation of bovine serum 

albumin and sugar beet pectin: stabilising oil-in-water emulsions. Journal of Colloid 

Interface Science, 388(1), 103-111.

Li, X., Fang, Y., Al-Assaf, S., Phillips, G. O., Yao, X., Zhang, Y., Zhao, M., Zhang, K., & Jiang, F. 

(2012). Complexation of bovine serum albumin and sugar beet pectin: structural transitions 

and phase diagram. Langmuir, 28(27), 10164-10176.

Mekhloufi, G., Sanchez, C., & Renard, D. (2005). pH-induced structural transitions during 

complexation and coacervation of β-lactoglobulin and acacia gum. Langmuir, 21(1), 

386-394.

Miquelim, J. N., Lannes, S. C. S., & Mezzenga, R. (2010). pH Influence on the stability of foams 

with protein–polysaccharide complexes at their interfaces. Food Hydrocolloids, 24, 398-405.

Murray, B. S. (2011). Rheological properties of protein films. Current Opinion in Colloid & 

Interface Science, 16(1), 27-35.

Narchi, I., Vial, C., & Djelveh, G. (2009). Effect of protein–polysaccharide mixtures on the 

continuous manufacturing of foamed food products. Food Hydrocolloids, 23(1), 188-201.

Oboroceanu, D., Wang, L., Magner, E., & Auty, M. A. E. (2014). Fibrillization of whey proteins 

 

 

 

Journal Pre-proof



26

improves foaming capacity and foam stability at low protein concentrations. Journal of Food 

Engineering, 121(1), 102-111.

Oetjen, K., Bilke-Krause, C., Madani, M., & Willers, T. (2014). Temperature effect on foamability, 

foam stability, and foam structure of milk. Colloids and Surfaces A: Physicochemical and 

Engineering Aspects, 460, 280-285.

Peng, D., Yang, J., Li, J., Tang, C., & Li, B. (2017). Foams stabilized by β-lactoglobulin amyloid 

fibrils: effect of pH. Journal of Agricultural and Food Chemistry, 65(48), 10658-10665.

Piazza, L., Gigli, J., & Bulbarello, A. (2008). Interfacial rheology study of espresso coffee foam 

structure and properties. Journal of Food Engineering, 84(3), 420-429.

Ptaszek, P. (2013). The non-linear rheological properties of fresh wet foams based on egg white 

proteins and selected hydrocolloids. Food Research International, 54(1), 478-486.

Raikos, V., Campbell, L., & Euston, S. R. (2007). Effects of sucrose and sodium chloride on 

foaming properties of egg white proteins. Food Research International, 40(3), 347-355.

Rodríguez Patino, J. M., Carrera, S. C., & Rodríguez Niño, M. R. (2008). Implications of interfacial 

characteristics of food foaming agents in foam formulations. Advances in Colloid & Interface 

Science, 140(2), 95-113.

Rodríguez Patino, J. M., & Pilosof, A. M. R. (2011). Protein–polysaccharide interactions at fluid 

interfaces. Food Hydrocolloids, 25(8), 1925-1937.

Ruíz Henestrosa, V. P., Carrera-Sánchez, C., & Patino, J. M., Rodríguez. (2008). Effect of sucrose 

on functional properties of soy globulins: adsorption and foam characteristics. Journal of 

Agricultural and  Food Chemistry, 56(7), 2512-2521.

Sadahira, M. S., Lopes, F. C., Rodrigues, M. I., Yamada, A. T., Cunha, R. L., & Netto, F. M. (2015). 

Effect of pH and interaction between egg white protein and hydroxypropymethylcellulose in 

 

 

 

Journal Pre-proof



27

bulk aqueous medium on foaming properties. Carbohydr Polym, 125, 26-34.

Sadahira, M. S., Rodrigues, M. I., Akhtar, M., Murray, B. S., & Netto, F. M. (2016). Effect of egg 

white protein-pectin electrostatic interactions in a high sugar content system on foaming and 

foam rheological properties. Food Hydrocolloids, 58, 1-10.

Seyrek, E., Dubin, P. L., Tribet, C., & Gamble, E. A. (2003). Ionic strength dependence of 

protein-polyelectrolyte interactions. Biomacromolecules, 4(2), 273-282.

Stender, E. G. P., Khan, S., Ipsen, R., Madsen, F., Hägglund, P., Hachem, M. A., Almdal, K., Westh, 

P., & Svensson, B. (2018). Effect of alginate size, mannuronic/guluronic acid content and pH 

on particle Size, thermodynamics and composition of complexes with β-lactoglobulin. Food 

Hydrocolloids, 75, 157-163.

Su, C., Feng, Y., Jing, Y., Zhang, Y., Gao, Z., Meng, Z., Nan, Y., Nishinari, K., & Fang, Y. (2018). 

Effect of sodium alginate on the stability of natural soybean oil body emulsions. RSC 

Advances, 8(9), 4731-4741.

Vaclavik, V. A., & Christian, E. W. (2008). Food emulsions and foams. In  Essentials of food 

science (pp. 311-327). New York, USA: Springer science business media.

van den Berg, M., Jara, F. L., & Pilosof, A. M. R. (2015). Performance of egg white and 

hydroxypropylmethylcellulose mixtures on gelation and foaming. Food Hydrocolloids, 48, 

282-291.

van Kempen, S. E., Schols, H. A., Van, d. L. E., & Sagis, L. M. (2013). Non-linear surface 

dilatational rheology as a tool for understanding microstructures of air/water interfaces 

stabilized by oligofructose fatty acid esters. Soft Matter, 9(40), 9579-9592.

Vinayahan, T., ., Williams, P. A., & Phillips, G. O. (2010). Electrostatic interaction and complex 

formation between gum arabic and bovine serum albumin. Biomacromolecules, 11(12), 

 

 

 

Journal Pre-proof



28

3367-3374.

Wan, Z., Yang, X., & LM, S. (2016). Nonlinear surface dilatational rheology and foaming behavior 

of p rotein and Protein Fibrillar Aggregates in the Presence of Natural Surfactant. Langmuir, 

32(15), 3679-3690.

Wan, Z., Yang, X., & Sagis, L. M. C. (2016). Contribution of long fibrils and peptides to surface and 

foaming behavior of soy protein fibril system. Langmuir, 32(32), 8092-8101.

Weinbreck, F., De, V. R., Schrooyen, P., & de Kruif, C. G. (2003). Complex coacervation of whey 

proteins and gum arabic. Biomacromolecules, 4(2), 293-303.

Weinbreck, F., Nieuwenhuijse, H., Robijn, G. W., & de Kruif, C. G. (2004). Complexation of whey 

proteins with carrageenan. Journal of Agricultural & Food Chemistry, 52(11), 3550-3555.

Wouters, A. G. B., Fierens, E., Rombouts, I., Brijs, K., Joye, I. J., & Delcour, J. A. (2017). 

Exploring the relationship between structural and air-water interfacial properties of wheat 

(triticum aestivum L.) gluten hydrolysates in a food system relevant pH range. Journal of 

Agricultural & Food Chemistry, 65(6), 1263-1271.

Yao, X., Xiang, S., Nie, K., Gao, Z., Zhang, W., Fang, Y., Nishinari, K., Phillips, G. O., & Jiang, F. 

(2016). Whey protein isolate/gum arabic intramolecular soluble complexes improving the 

physical and oxidative stabilities of conjugated linoleic acid emulsions. RSC Advances, 

6(18), 14635-14642.

Ye, A., & Flanagan, J., H. (2006). Formation of stable nanoparticles via electrostatic complexation 

between sodium caseinate and gum arabic. Biopolymers, 82(2), 121-133.

Zang, D., Li, L., Di, W., Zhang, Z., Ding, C., Chen, Z., Shen, W., Binks, B. P., & Geng, X. (2018). 

Inducing drop to bubble transformation via resonance in ultrasound. Nat Commun, 9(1), 

3546.

 

 

 

Journal Pre-proof



29

Figure Captions

Fig. 1. (a) ζ-potential as a function of pH for WPI/ALG with varying mixing ratios (r). (b) 

Isoelectric point (IEP) plotted against r. The logarithmic x-axis in (b) was broken for including the 

data points of pure WPI and ALG (indicated in yellow). The total biopolymer concentration was 

fixed at 0.1% w/w. 

Fig. 2. (a) Evolution of the scattered light intensity at 173° (I173, △) and turbidity at 500 nm (τ, □) 

during GDL-induced acidification and turbidity measured at 500 nm (○) during HCl titration for 

WPI/ALG mixture with r = 1. (b) Phase diagram of WPI/ALG mixtures in a pH−composition 

coordinate: △ (pHc), □ (pHφ), and ○ (pHd). The dashed line indicates the IEP of pure WPI.

Fig. 3. Foam capacity of WPI/ALG mixtures at pHs 7.0, 4.0 and 0.5 and with varying mixing ratio. 

The total biopolymer concentration was fixed at 0.1% w/w. 

Fig. 4. (a) Foam formation and decay for WPI/ALG mixtures at pH 4.0 and various mixing ratios; (b) 

Comparison of foam half-life for WPI/ALG mixtures at different pHs and mixing ratios. The total 

biopolymer concentration was fixed at 0.1% w/w.

Fig. 5. Time evolution of air bubbles within foams formed by WPI/ALG mixtures at different pHs 

and mixing ratios: pH 7.0 (a); pH 4.0 (b) and pH 0.5 (c). The total biopolymer concentration was 

fixed at 0.1% w/w. Scale bars = 1 mm. 

Fig. 6. Viscosity of WPI/ALG mixtures as a function of shear rate at different pHs and mixing 

ratios: pH 7.0 (a); pH 4.0 (b) and pH 0.5 (c). The total biopolymer concentration was fixed at 0.1% 

w/w.

Fig. 7. Time evolution of the surface tension at pHs 7.0 (a) and 4.0 (b) and the surface dilatational 

modulus at pHs 7.0 (c) and 4.0 (d) upon the adsorption of WPI/ALG on to the air-water interface at 

varying mixing ratios.
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Fig. 8. AFM visualization of the interfacial films formed by WPI and WPI/ALG at the air-water 

interface at pH 7.0 and pH 4.0 and with different mixing ratios r. The total concentration of WPI and 

ALG was 0.01 mg/mL. The scale bars represent 400 nm.
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Fig. 1. (a) ζ-potential as a function of pH for WPI/ALG with varying mixing ratios (r). (b) 

Isoelectric point (IEP) plotted against r. The logarithmic x-axis in (b) was broken for including the 

data points of pure WPI and ALG (indicated in yellow). The total biopolymer concentration was 

fixed at 0.1% w/w. 
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Fig. 2. (a) Evolution of the scattered light intensity at 173° (I173, △) and turbidity at 500 nm (τ, □) 

during GDL-induced acidification and turbidity measured at 500 nm (○) during HCl titration for 

WPI/ALG mixture with r = 1. (b) Phase diagram of WPI/ALG mixtures in a pH−composition 

coordinate: △ (pHc), □ (pHφ), and ○ (pHd). The dashed line indicates the IEP of pure WPI.
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Fig. 3. Foam capacity of WPI/ALG mixtures at pHs 7.0, 4.0 and 0.5 and with varying mixing ratio. 

The total biopolymer concentration was fixed at 0.1% w/w. 
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Fig. 4. (a) Foam formation and decay for WPI/ALG mixtures at pH 4.0 and various mixing ratios; (b) 

Comparison of foam half-life for WPI/ALG mixtures at different pHs and mixing ratios. The total 

biopolymer concentration was fixed at 0.1% w/w. 
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Fig. 5. Time evolution of air bubbles within foams formed by WPI/ALG mixtures at different pHs 

and mixing ratios: pH 7.0 (a); pH 4.0 (b) and pH 0.5 (c). The total biopolymer concentration was 
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fixed at 0.1% w/w. Scale bars = 1 mm. 
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Fig. 6. Viscosity of WPI/ALG mixtures as a function of shear rate at different pHs and mixing 

ratios: pH 7.0 (a); pH 4.0 (b) and pH 0.5 (c). The total biopolymer concentration was fixed at 0.1% 

w/w.
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Fig. 7. Time evolution of the surface tension at pHs 7.0 (a) and 4.0 (b) and the surface dilatational 

modulus at pHs 7.0 (c) and 4.0 (d) upon the adsorption of WPI/ALG on to the air-water interface at 

varying mixing ratios.
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Fig. 8. AFM visualization of the interfacial films formed by WPI and WPI/ALG at the air-water 

interface at pH 7.0 and pH 4.0 and with different mixing ratios r. The corresponding components 

observed in each sample has been marked in the images. The total concentration of WPI and ALG 

was 0.01 mg/mL. The scale bars represent 400 nm. 
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Highlights

 The foaming properties of protein/polysaccharide mixtures were investigated.

 The foaming properties were closely related to the state of electrostatic complexes.

 Intramolecular soluble complexes at stoichiometry provided the best foam stability.

 The foaming properties were consistent with interfacial adsorption and structures.
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