23 research outputs found
Temporal Prediction Model-Based Fast Inter CU Partition for Versatile Video Coding
Versatile video coding (VVC) adopts an advanced quad-tree plus multi-type tree (QTMT) coding structure to obtain higher compression efficiency, but it comes at the cost of a considerable increase in coding complexity. To effectively reduce the coding complexity of the QTMT-based coding unit (CU) partition, we propose a fast inter CU partition method based on a temporal prediction model, which includes early termination QTMT partition and early skipping multi-type tree (MT) partition. Firstly, according to the position of the current CU, we extract the optimal CU partition information of the position corresponding to the previously coded frames. We then establish a temporal prediction model based on temporal CU partition information to predict the current CU partition. Finally, to reduce the cumulative of errors of the temporal prediction model, we further extract the motion vector difference (MVD) of the CU to determine whether the QTMT partition can be terminated early. The experimental results show that the proposed method can reduce the inter coding complexity of VVC by 23.19% on average, while the Bjontegaard delta bit rate (BDBR) is only increased by 0.97% on average under the Random Access (RA) configuration
Competing endogenous RNA network analysis of Turner syndrome patient-specific iPSC-derived cardiomyocytes reveals dysregulation of autosomal heart development genes by altered dosages of X-inactivation escaping non-coding RNAs
Abstract Background A 45,X monosomy (Turner syndrome, TS) is the only chromosome haploinsufficiency compatible with life. Nevertheless, the surviving TS patients still suffer from increased morbidity and mortality, with around one-third of them subjecting to heart abnormalities. How loss of one X chromosome drive these conditions remains largely unknown. Methods Here, we have generated cardiomyocytes (CMs) from wild-type and TS patient-specific induced pluripotent stem cells and profiled the mRNA, lncRNA and circRNA expression in these cells. Results We observed lower beating frequencies and higher mitochondrial DNA copies per nucleus in TS-CMs. Moreover, we have identified a global transcriptome dysregulation of both coding and non-coding RNAs in TS-CMs. The differentially expressed mRNAs were enriched of heart development genes. Further competing endogenous RNA network analysis revealed putative regulatory circuit of autosomal genes relevant with mitochondrial respiratory chain and heart development, such as COQ10A, RARB and WNT2, mediated by X-inactivation escaping lnc/circRNAs, such as lnc-KDM5C-4:1, hsa_circ_0090421 and hsa_circ_0090392. The aberrant expressions of these genes in TS-CMs were verified by qPCR. Further knockdown of lnc-KDM5C-4:1 in wild-type CMs exhibited significantly reduced beating frequencies. Conclusions Our study has revealed a genomewide ripple effect of X chromosome halpoinsufficiency at post-transcriptional level and provided insights into the molecular mechanisms underlying heart abnormalities in TS patients
Prognostic Value and Implication for Chemotherapy Treatment of ABCB1 in Epithelial Ovarian Cancer: A Meta-Analysis.
BACKGROUND:Chemotherapy resistance is reported to correlate with up-regulation of anti-tumor agent transporter ABCB1 (p-gp) in epithelial ovarian cancer (EOC), but the results remain controversial. To reconcile the results, a systematic review followed by meta-analysis was performed to assess the association between high ABCB1 status or ABCB1 gene variants and overall survival (OS), progression free survival (PFS), and total response rate (TR) in patients with EOC. MATERIALS AND METHODS:Electronic searches were performed using Pubmed, EMBASE, Web of Science and Chinese Wanfang databases from January 1990 to February 2016. Summary hazard ratio (HR), risk ratio (RR) and 95% confidence intervals (CIs) were combined using fixed or random-effects models as appropriate. RESULTS:Thirty-eight retrospective studies of 8607 cases qualified for meta-analysis were identified. Our results suggested that ABCB1 over-expression was significantly associated with unfavorable OS (HR = 1.54; 95% CI, 1.25-1.90), PFS (HR = 1.49; 95% CI, 1.22-1.82) and TR (RR = 0.63; 95% CI, 0.54-0.75). After adjustment for age, clinical stage, residual disease, histological type and tumor grade, high ABCB1 status remained to be a significant risk factor for adverse OS and PFS. Patients with recurrent ABCB1 positivity suffered from poorer OS than those with primary ABCB1 positivity. However, stratified by chemotherapy regimen, inverse correlation between high ABCB1 status and poor OS, PFS and TR were only found in patients underwent platinum-based chemotherapy but not in patients received standard platinum/paclitaxel-based chemotherapy. No evidence was found for any association between ABCB1 gene polymorphisms and OS, PFS or TR. CONCLUSION:High ABCB1 status is significantly associated with chemo-resistance and poor prognosis in patients with EOC. Large-scale, prospective studies are needed to assess the clinical value of ABCB1 expression in EOC more accurately
A low-nuclear Ag4 nanocluster as a customized catalyst for the cyclization of propargylamine with CO2
Abstract The preparation of 2-Oxazolidinones using CO2 offers opportunities for green chemistry, but multi-site activation is difficult for most catalysts. Here, A low-nuclear Ag4 catalytic system is successfully customized, which solves the simultaneous activation of acetylene (-C≡C) and amino (-NH-) and realizes the cyclization of propargylamine with CO2 under mild conditions. As expected, the Turnover Number (TON) and Turnover Frequency (TOF) values of the Ag4 nanocluster (NC) are higher than most of reported catalysts. The Ag4* NC intermediates are isolated and confirmed their structures by Electrospray ionization (ESI) and 1H Nuclear Magnetic Resonance (1H NMR). Additionally, the key role of multiple Ag atoms revealed the feasibility and importance of low-nuclear catalysts at the atomic level, confirming the reaction pathways that are inaccessible to the Ag single-atom catalyst and Ag2 NC. Importantly, the nanocomposite achieves multiple recoveries and gram scale product acquisition. These results provide guidance for the design of more efficient and targeted catalytic materials
Forest plots presenting HRs of EOC PFS for high ABCB1 expression, adjusted results and <i>ABCB1</i> gene variants.
<p>HR = hazard ratio; EOC = epithelial ovarian cancer; PFS = progression free survival.</p
Characteristics of studies that identify ABCB1 protein (p-gp) expression in epithelial ovarian cancer.
<p>Characteristics of studies that identify ABCB1 protein (p-gp) expression in epithelial ovarian cancer.</p
Forest plots presenting RRs of EOC TR for high ABCB1 expression.
<p>RR = risk ratio; EOC = epithelial ovarian cancer; TR = total response rate.</p
Forest plots of subgroup meta-analysis presenting RRs of EOC TR for high ABCB1 expression.
<p>RR = risk ratio; EOC = epithelial ovarian cancer; TR = total response rate.</p
Funnel plots presenting prognostic value of ABCB1 for OS, PFS and TR.
<p>OS = overall survival; PFS = progression free survival; TR = total response rate. A, funnel plots showing the distribution of effect size and prevision of individual study estimate when evaluating the summary HR for OS. Egger’s test: <i>P</i> = 0.078. B, funnel plots showing the distribution of effect size and prevision of individual study estimate when evaluating the summary HR for PFS. Egger’s test: <i>P</i> = 0.146. C, funnel plots showing the distribution of effect size and prevision of individual study estimate when evaluating the summary RR for TR. Egger’s test: <i>P</i> = 0.019.</p