5,316 research outputs found
Making light work of heavy metal contamination::The potential for coupling bioremediation with bioenergy production
Intense anthropogenic activity continues to expose the natural environment to heavy metal contamination. Whilst a number of physical and chemical solutions for remediation exist, the use of higher plants and algae for clean‐up of contaminated landscapes, termed “phytoremediation” and “phycoremediation”, respectively, offer an attractive and sustainable alternative. However, these remediation processes will always lead to a high‐moisture, heavy metal‐contaminated biomass, which must be further processed to partition, or render inert, the metal contaminants. Conversion of this metal‐rich biomass into second‐generation biofuels offers a useful route to subsidise the economics of remediation activities. Here we briefly review the various methods for bioremediation of heavy metals, and discuss the potential to produce bioenergy from these biomass sources. Ultimately, coupling the bioremediation activity to bioenergy production gives far‐reaching social and economic benefits; however, established processes such as direct combustion and anaerobic digestion risk releasing heavy metals back into the environment. Alternatively, thermochemical conversions such as pyrolysis or hydrothermal liquefaction (HTL) offer significant advantages in terms of the segregation of metals into a relatively inert and compact solid phase while producing a biocrude oil for bioenergy production. In addition, preliminary work suggests that the HTL process can also be used to partition essential macronutrients, such as N, P and K, into an aqueous medium, allowing additional nutrient recycling
Unearthing the unique stability of thiophosphonium-C-terminal cysteine adducts on peptides and proteins
Herein we report a fundamental discovery on the use of tris(dialkylamino)phosphine reagents for peptide and protein modification. We discovered that C-terminal thiophosphonium species, which are uniquely stable, could be selectively and rapidly generated from their disulfide counterparts. In sharp and direct contrast, internal thiophosphonium species rapidly degrade to dehydroalanine. We demonstrate this remarkable chemoselectivity on a bis-cysteine model peptide, and the formation of a stable C-terminal-thiophosphonium adduct on an antibody fragment, as well as characterise the species in various small molecule/peptide studies
Differential regulation of effector- and central-memory responses to Toxoplasma gondii infection by IL-12 revealed by tracking of Tgd057-specific CD8+ T cells
10.1371/journal.ppat.1000815PLoS Pathogens6
Modulation of the Cellular Expression of Circulating Advanced Glycation End-Product Receptors in Type 2 Diabetic Nephropathy
Background. Advanced glycation end-products (AGEs) and their receptors are prominent contributors to diabetic kidney disease. Methods. Flow cytometry was used to measure the predictive capacity for kidney impairment of the AGE receptors RAGE, AGE-R1, and AGE-R3 on peripheral blood mononuclear cells (PBMCs) in experimental models of type 2 diabetes (T2DM) fed varied AGE containing diets and in obese type 2 diabetic and control human subjects. Results. Diets high in AGE content fed to diabetic mice decreased cell surface RAGE on PBMCs and in type 2 diabetic patients with renal impairment (RI). All diabetic mice had elevated Albumin excretion rates (AERs), and high AGE fed dbdb mice had declining Glomerular filtration rate (GFR). Cell surface AGE-R1 expression was also decreased by high AGE diets and with diabetes in dbdb mice and in humans with RI. PBMC expression of AGE R3 was decreased in diabetic dbdb mice or with a low AGE diet. Conclusions. The most predictive PBMC profile for renal disease associated with T2DM was an increase in the cell surface expression of AGE-R1, in the context of a decrease in membranous RAGE expression in humans, which warrants further investigation as a biomarker for progressive DN in larger patient cohorts
Rhesus TRIM5α disrupts the HIV-1 capsid at the inter-hexamer interfaces
TRIM proteins play important roles in the innate immune defense against retroviral infection, including human immunodeficiency virus type-1 (HIV-1). Rhesus macaque TRIM5α (TRIM5αrh) targets the HIV-1 capsid and blocks infection at an early post-entry stage, prior to reverse transcription. Studies have shown that binding of TRIM5α to the assembled capsid is essential for restriction and requires the coiled-coil and B30.2/SPRY domains, but the molecular mechanism of restriction is not fully understood. In this study, we investigated, by cryoEM combined with mutagenesis and chemical cross-linking, the direct interactions between HIV-1 capsid protein (CA) assemblies and purified TRIM5αrh containing coiled-coil and SPRY domains (CC-SPRYrh). Concentration-dependent binding of CC-SPRYrh to CA assemblies was observed, while under equivalent conditions the human protein did not bind. Importantly, CC-SPRYrh, but not its human counterpart, disrupted CA tubes in a non-random fashion, releasing fragments of protofilaments consisting of CA hexamers without dissociation into monomers. Furthermore, such structural destruction was prevented by inter-hexamer crosslinking using P207C/T216C mutant CA with disulfide bonds at the CTD-CTD trimer interface of capsid assemblies, but not by intra-hexamer crosslinking via A14C/E45C at the NTD-NTD interface. The same disruption effect by TRIM5αrh on the inter-hexamer interfaces also occurred with purified intact HIV-1 cores. These results provide insights concerning how TRIM5α disrupts the virion core and demonstrate that structural damage of the viral capsid by TRIM5α is likely one of the important components of the mechanism of TRIM5α-mediated HIV-1 restriction. © 2011 Zhao et al
Current and projected gaps in the availability of radiotherapy in the Asia-Pacific region: a country income-group analysis
Background: Cancer incidence and mortality is increasing rapidly worldwide, with a higher cancer burden observed in the Asia-Pacific region than in other regions. To date, evidence-based modelling of radiotherapy demand has been based on stage data from high-income countries (HIC) that do not account for the later stage at presentation seen in many low-income and middle-income countries (LMICs). We aimed to estimate the current and projected demand and supply in megavoltage radiotherapy machines in the Asia-Pacific region, using a national income-group adjusted model. Methods: Novel LMIC radiotherapy demand and outcome models were created by adjusting previously developed models that used HIC cancer staging data. These models were applied to the cancer case mix (ie, the incidence of each different cancer) in each LMIC in the Asia-Pacific region to estimate the current and projected optimal radiotherapy utilisation rate (ie, the proportion of cancer cases that would require radiotherapy on the basis of guideline recommendations), and to estimate the number of megavoltage machines needed in each country to meet this demand. Information on the number of megavoltage machines available in each country was retrieved from the Directory of Radiotherapy Centres. Gaps were determined by comparing the projected number of megavoltage machines needed with the number of machines available in each region. Megavoltage machine numbers, local control, and overall survival benefits were compared with previous data from 2012 and projected data for 2040. Findings: 57 countries within the Asia-Pacific region were included in the analysis with 9·48 million new cases of cancer in 2020, an increase of 2·66 million from 2012. Local control was 7·42% and overall survival was 3·05%. Across the Asia-Pacific overall, the current optimal radiotherapy utilisation rate is 49·10%, which means that 4·66 million people will need radiotherapy in 2020, an increase of 1·38 million (42%) from 2012. The number of megavoltage machines increased by 1261 (31%) between 2012 and 2020, but the demand for these machines increased by 3584 (42%). The Asia-Pacific region only has 43·9% of the megavoltage machines needed to meet demand, ranging from 9·9–40·5% in LMICs compared with 67·9% in HICs. 12 000 additional megavoltage machines will be needed to meet the projected demand for 2040. Interpretation: The difference between supply and demand with regard to megavoltage machine availability has continued to widen in LMICs over the past decade and is projected to worsen by 2040. The data from this study can be used to provide evidence for the need to incorporate radiotherapy in national cancer control plans and to inform governments and policy makers within the Asia-Pacific region regarding the urgent need for investment in this sector. Funding: The Regional Cooperative Agreement for Research, Development and Training Related to Nuclear Science and Technology for Asia and the Pacific (RCA) Regional Office (RCARP03)
On the computation of zone and double zone diagrams
Classical objects in computational geometry are defined by explicit
relations. Several years ago the pioneering works of T. Asano, J. Matousek and
T. Tokuyama introduced "implicit computational geometry", in which the
geometric objects are defined by implicit relations involving sets. An
important member in this family is called "a zone diagram". The implicit nature
of zone diagrams implies, as already observed in the original works, that their
computation is a challenging task. In a continuous setting this task has been
addressed (briefly) only by these authors in the Euclidean plane with point
sites. We discuss the possibility to compute zone diagrams in a wide class of
spaces and also shed new light on their computation in the original setting.
The class of spaces, which is introduced here, includes, in particular,
Euclidean spheres and finite dimensional strictly convex normed spaces. Sites
of a general form are allowed and it is shown that a generalization of the
iterative method suggested by Asano, Matousek and Tokuyama converges to a
double zone diagram, another implicit geometric object whose existence is known
in general. Occasionally a zone diagram can be obtained from this procedure.
The actual (approximate) computation of the iterations is based on a simple
algorithm which enables the approximate computation of Voronoi diagrams in a
general setting. Our analysis also yields a few byproducts of independent
interest, such as certain topological properties of Voronoi cells (e.g., that
in the considered setting their boundaries cannot be "fat").Comment: Very slight improvements (mainly correction of a few typos); add DOI;
Ref [51] points to a freely available computer application which implements
the algorithms; to appear in Discrete & Computational Geometry (available
online
Graft-vs-tumor effect in patients with advanced nasopharyngeal cancer treated with nonmyeloablative allogeneic PBSC transplantation
While nonmyeloablative peripheral blood stem cell transplantation (NST) has shown efficacy against several solid tumors, it is untested in nasopharyngeal cancer (NPC). In a phase II clinical trial, 21 patients with pretreated metastatic NPC underwent NST with sibling PBSC allografts, using CY conditioning, thymic irradiation and in vivo T-cell depletion with thymoglobulin. Stable lymphohematopoietic chimerism was achieved in most patients and prophylactic CYA was tapered at a median of day +30. Seven patients (33%) showed partial response and three (14%) achieved stable disease. Four patients were alive at 2 years and three showed prolonged disease control of 344, 525 and 550 days. With a median follow-up of 209 (4–1147) days, the median PFS was 100 days (95% confidence interval (CI), 66–128 days), and median OS was 209 days (95% CI, 128–236 days). Patients with chronic GVHD had better survival—median OS 426 days (95% CI, 194–NE days) vs 143 days (95% CI, 114–226 days) (P=0.010). Thus, NST may induce meaningful clinical responses in patients with advanced NPC
Amplified Squeezed States: Analyzing Loss and Phase Noise
Phase-sensitive amplification of squeezed states is a technique to mitigate
high detection loss, e.g. at 2-micrometre wavelengths. Our analytical model of
amplified squeezed states expands on the effect of phase noise and derives two
practical parameters: the effective measurable squeezing and the effective
detection efficiency. A case study including realistic parameters demonstrates
the benefit of phase-sensitive amplification. We identified the phase noise in
the optical parametric amplifier (OPA) minimally affects the squeezing level,
enabling increased gain of the OPA. This scheme is compatible with proposed
gravitational-wave detectors and consistent with applications in quantum
systems that are degraded by output coupling loss in optical waveguides.Comment: 9 pages, 6 figures, 1 table. Submitted to Physical Review
- …