78 research outputs found

    NO signaling and S-nitrosylation regulate PTEN inhibition in neurodegeneration

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The phosphatase PTEN governs the phosphoinositide 3-kinase (PI3K)/Akt signaling pathway which is arguably the most important pro-survival pathway in neurons. Recently, PTEN has also been implicated in multiple important CNS functions such as neuronal differentiation, plasticity, injury and drug addiction. It has been reported that loss of PTEN protein, accompanied by Akt activation, occurs under excitotoxic conditions (stroke) as well as in Alzheimer's (AD) brains. However the molecular signals and mechanism underlying PTEN loss are unknown.</p> <p>Results</p> <p>In this study, we investigated redox regulation of PTEN, namely S-nitrosylation, a covalent modification of cysteine residues by nitric oxide (NO), and H<sub>2</sub>O<sub>2</sub>-mediated oxidation. We found that S-nitrosylation of PTEN was markedly elevated in brains in the early stages of AD (MCI). Surprisingly, there was no increase in the H<sub>2</sub>O<sub>2</sub>-mediated oxidation of PTEN, a modification common in cancer cell types, in the MCI/AD brains as compared to normal aged control. Using several cultured neuronal models, we further demonstrate that S-nitrosylation, in conjunction with NO-mediated enhanced ubiquitination, regulates both the lipid phosphatase activity and protein stability of PTEN. S-nitrosylation and oxidation occur on overlapping and distinct Cys residues of PTEN. The NO signal induces PTEN protein degradation via the ubiquitin-proteasome system (UPS) through NEDD4-1-mediated ubiquitination.</p> <p>Conclusion</p> <p>This study demonstrates for the first time that NO-mediated redox regulation is the mechanism of PTEN protein degradation, which is distinguished from the H<sub>2</sub>O<sub>2</sub>-mediated PTEN oxidation, known to only inactivate the enzyme. This novel regulatory mechanism likely accounts for the PTEN loss observed in neurodegeneration such as in AD, in which NO plays a critical pathophysiological role.</p

    Correlation Between Bioelectrical Impedance Analysis and Chest CT-Measured Erector Spinae Muscle Area: A Cross-Sectional Study

    Get PDF
    BackgroundSkeletal muscle mass (SMM) plays an important part in diverse health and disease states. Bioelectrical impedance analysis (BIA) and computed tomography (CT) are available for its assessment. However, muscle mass assessed by BIA may be influenced by multiple factors. The erector spinae muscle area (ESA) on chest CT is recently presumed to be representative of SMM. This study aimed to derive BIA from the ESA and evaluate the magnitude of association (between ESA measured from chest CT) and BIA.MethodsSubjects hospitalized for health checkups between December 2020 and December 2021, having undergone both BIA (50 kHz, 0.8 mA) and chest CT, were included. ESA was quantified at the level of the 12th thoracic vertebra (T12-ESA) by a standardized semi-automated segmentation algorithm. Low SMM was defined using the Asian Working Group for Sarcopenia criteria. The association between T12-ESA and BIA was then evaluated. Stratified analyses by sex and BMI were also performed.ResultsAmong 606 included subjects (59.7 ± 16.6 years, 63.5% male), 110 (18.2%) had low SMM. BMI in low and normal SMM groups was 20.1 and 24.7 kg/m2, respectively. Current smoking, drinking, chronic obstructive pulmonary disease, and chronic renal dysfunction were more frequently seen in the low SMM group than in the normal SMM group. The final regression model included T12-ESA, weight, BMI, and age, and had an adjusted R2 of 0.806 with BIA. In the validation group, the correlation between T12-ESA-derived BIA and BIA remained high (Pearson correlation = 0.899). Stratified analysis disclosed a stronger correlation between T12-ESA and BIA in male subjects than in female subjects (adjusted R2 = 0.790 vs. adjusted R2 = 0.711, p &lt; 0.05), and a better correlation was observed in obese (BMI ≥ 30 kg/m2) compared with underweight (BMI &lt; 18.5 kg/m2) subjects (adjusted R2 = 0.852 vs. adjusted R2 = 0.723, p &lt; 0.05). Additional analysis revealed a significant correlation between T12-ESA and skeletal muscle cross-sectional area at the 3rd lumbar vertebra (L3-CSA) (adjusted R2 = 0.935, p &lt; 0.001).ConclusionsCT-based assessment of ESA at the T12 level is feasible and correlated well with BIA, especially in male subjects and obese subjects

    Cortico-basal ganglia networks dysfunction associated with disease severity in patients with idiopathic blepharospasm

    Get PDF
    BackgroundStructural changes occur in brain regions involved in cortico-basal ganglia networks in idiopathic blepharospasm (iBSP); whether these changes influence the function connectivity patterns of cortico-basal ganglia networks remains largely unknown. Therefore, we aimed to investigate the global integrative state and organization of functional connections of cortico-basal ganglia networks in patients with iBSP.MethodsResting-state functional magnetic resonance imaging data and clinical measurements were acquired from 62 patients with iBSP, 62 patients with hemifacial spasm (HFS), and 62 healthy controls (HCs). Topological parameters and functional connections of cortico-basal ganglia networks were evaluated and compared among the three groups. Correlation analyses were performed to explore the relationship between topological parameters and clinical measurements in patients with iBSP.ResultsWe found significantly increased global efficiency and decreased shortest path length and clustering coefficient of cortico-basal ganglia networks in patients with iBSP compared with HCs, however, such differences were not observed between patients with HFS and HCs. Further correlation analyses revealed that these parameters were significantly correlated with the severity of iBSP. At the regional level, the functional connectivity between the left orbitofrontal area and left primary somatosensory cortex and between the right anterior part of pallidum and right anterior part of dorsal anterior cingulate cortex was significantly decreased in patients with iBSP and HFS compared with HCs.ConclusionDysfunction of the cortico-basal ganglia networks occurs in patients with iBSP. The altered network metrics of cortico-basal ganglia networks might be served as quantitative markers for evaluation of the severity of iBSP

    High Thyroid Stimulating Hormone Level Is Associated With Hyperandrogenism in Euthyroid Polycystic Ovary Syndrome (PCOS) Women, Independent of Age, BMI, and Thyroid Autoimmunity: A Cross-Sectional Analysis

    Get PDF
    Background: Infertility and dyslipidemia are frequently present in both women with polycystic ovary syndrome (PCOS) and subjects with thyroid dysfunction. Limited study regarding the association between thyroid stimulating hormone (TSH) level and phenotypes in euthyroid PCOS women. We aimed to determine whether the variation of TSH level associates with phenotypes in euthyroid PCOS patients.Methods: Cross-sectional study including 600 PCOS and 200 age, body mass index (BMI), and thyroid autoimmunity-matched Chinese women from Renji hospital, Shanghai Jiaotong university during January 2010 and August 2018. The anthropometric and serum biochemical parameters related to TSH, thyroid autoimmunity, lipid profiles, and sex steroids were detected.Results: The TSH level is higher in (2.29 ± 1.24 vs. 1.86 ± 0.90 mu/L, p &lt; 0.001) in PCOS than controls. In euthyroid PCOS patients, TSH, TG, TC, LDL-c, and apoB level increased from non-hyperandrogenism (nonHA) to HA group (all p &lt; 0.05). TSH level is positively associated with TG, apoB, free T, FAI, and negatively associated with apoA (all p &lt; 0.05). The percentage of HA increased from TSH level (57.93% in TSH &lt; = 2.5 group vs. 69.46% in TSH &gt; 2.5 mU/L group, p = 0.006). HA phenotype is increased with TSH level independently of age, BMI, WC, LDL-C. Besides, in multivariate logistic regression analysis TSH and TG significantly associated with HA phenotype.Conclusions: Higher TSH level is associated with increased prevalence of HA phenotype independent of age, BMI and thyroid autoimmunity in euthyroid PCOS

    Excessive Biologic Response to IFNβ Is Associated with Poor Treatment Response in Patients with Multiple Sclerosis

    Get PDF
    Interferon-beta (IFNβ) is used to inhibit disease activity in multiple sclerosis (MS), but its mechanisms of action are incompletely understood, individual treatment response varies, and biological markers predicting response to treatment have yet to be identified.he relationship between the molecular response to IFNβ and treatment response was determined in 85 patients using a longitudinal design in which treatment effect was categorized by brain magnetic resonance imaging as good (n = 70) or poor response (n = 15). Molecular response was quantified using a customized cDNA macroarray assay for 166 IFN-regulated genes (IRGs).The molecular response to IFNβ differed significantly between patients in the pattern and number of regulated genes. The molecular response was strikingly stable for individuals for as long as 24 months, however, suggesting an individual ‘IFN response fingerprint’. Unexpectedly, patients with poor response showed an exaggerated molecular response. IRG induction ratios demonstrated an exaggerated molecular response at both the first and 6-month IFNβ injections.MS patients exhibit individually unique but temporally stable biological responses to IFNβ. Poor treatment response is not explained by the duration of biological effects or the specific genes induced. Rather, individuals with poor treatment response have a generally exaggerated biological response to type 1 IFN injections. We hypothesize that the molecular response to type I IFN identifies a pathogenetically distinct subset of MS patients whose disease is driven in part by innate immunity. The findings suggest a strategy for biologically based, rational use of IFNβ for individual MS patients

    Functional annotations of diabetes nephropathy susceptibility loci through analysis of genome-wide renal gene expression in rat models of diabetes mellitus

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hyperglycaemia in diabetes mellitus (DM) alters gene expression regulation in various organs and contributes to long term vascular and renal complications. We aimed to generate novel renal genome-wide gene transcription data in rat models of diabetes in order to test the responsiveness to hyperglycaemia and renal structural changes of positional candidate genes at selected diabetic nephropathy (DN) susceptibility loci.</p> <p>Methods</p> <p>Both Affymetrix and Illumina technologies were used to identify significant quantitative changes in the abundance of over 15,000 transcripts in kidney of models of spontaneous (genetically determined) mild hyperglycaemia and insulin resistance (Goto-Kakizaki-GK) and experimentally induced severe hyperglycaemia (Wistar-Kyoto-WKY rats injected with streptozotocin [STZ]).</p> <p>Results</p> <p>Different patterns of transcription regulation in the two rat models of diabetes likely underlie the roles of genetic variants and hyperglycaemia severity. The impact of prolonged hyperglycaemia on gene expression changes was more profound in STZ-WKY rats than in GK rats and involved largely different sets of genes. These included genes already tested in genetic studies of DN and a large number of protein coding sequences of unknown function which can be considered as functional and, when they map to DN loci, positional candidates for DN. Further expression analysis of rat orthologs of human DN positional candidate genes provided functional annotations of known and novel genes that are responsive to hyperglycaemia and may contribute to renal functional and/or structural alterations.</p> <p>Conclusion</p> <p>Combining transcriptomics in animal models and comparative genomics provides important information to improve functional annotations of disease susceptibility loci in humans and experimental support for testing candidate genes in human genetics.</p
    corecore