91 research outputs found

    Evolution of a behavior-linked microsatellite-containing element in the 5' flanking region of the primate AVPR1A gene

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The arginine vasopressin V1a receptor (V1aR) modulates social cognition and behavior in a wide variety of species. Variation in a repetitive microsatellite element in the 5' flanking region of the V1aR gene (<it>AVPR1A</it>) in rodents has been associated with variation in brain V1aR expression and in social behavior. In humans, the 5' flanking region of <it>AVPR1A </it>contains a tandem duplication of two ~350 bp, microsatellite-containing elements located approximately 3.5 kb upstream of the transcription start site. The first block, referred to as DupA, contains a polymorphic (GT)<sub>25 </sub>microsatellite; the second block, DupB, has a complex (CT)<sub>4</sub>-(TT)-(CT)<sub>8</sub>-(GT)<sub>24 </sub>polymorphic motif, known as RS3. Polymorphisms in RS3 have been associated with variation in sociobehavioral traits in humans, including autism spectrum disorders. Thus, evolution of these regions may have contributed to variation in social behavior in primates. We examined the structure of these regions in six ape, six monkey, and one prosimian species.</p> <p>Results</p> <p>Both tandem repeat blocks are present upstream of the <it>AVPR1A </it>coding region in five of the ape species we investigated, while monkeys have only one copy of this region. As in humans, the microsatellites within DupA and DupB are polymorphic in many primate species. Furthermore, both single (lacking DupB) and duplicated alleles (containing both DupA and DupB) are present in chimpanzee (<it>Pan troglodytes</it>) populations with allele frequencies of 0.795 and 0.205 for the single and duplicated alleles, respectively, based on the analysis of 47 wild-caught individuals. Finally, a phylogenetic reconstruction suggests two alternate evolutionary histories for this locus.</p> <p>Conclusion</p> <p>There is no obvious relationship between the presence of the RS3 duplication and social organization in primates. However, polymorphisms identified in some species may be useful in future genetic association studies. In particular, the presence of both single and duplicated alleles in chimpanzees provides a unique opportunity to assess the functional role of this duplication in contributing to variation in social behavior in primates. While our initial studies show no signs of directional selection on this locus in chimps, pharmacological and genetic association studies support a potential role for this region in influencing V1aR expression and social behavior.</p

    Fungal Community as a Bioindicator to Reflect Anthropogenic Activities in a River Ecosystem

    Get PDF
    The fungal community interacts with the ambient environment and can be used as a bioindicator to reflect anthropogenic activities in aquatic ecosystems. Several studies have investigated the impact of anthropogenic activities on the fungal community and found that community diversity and composition are influenced by such activities. Here we combined chemical analysis of water properties and sequencing of fungal internal transcribed spacer regions to explore the relationship between water quality indices and fungal community diversity and composition in three river ecosystem areas along a gradient of anthropogenic disturbance (i.e., less-disturbed mountainous area, wastewater-discharge urban area, and pesticide and fertilizer used agricultural area). Results revealed that the level of anthropogenic activity was strongly correlated to water quality and mycoplankton community. The increase in organic carbon and nitrogen concentrations in water improved the relative abundance of Schizosaccharomyces, which could be used as a potential biomarker to reflect pollutant and nutrient discharge. We further applied a biofilm reactor using water from the three areas as influent to investigate the differences in fungal communities in the formed biofilms. Different community compositions were observed among the three areas, with the dominant fungal phyla in the biofilms found to be more sensitive to seasonal effects than those found in water. Finally, we determined whether the fungal community could recover following water quality restoration. Our biofilm reactor assay revealed that the recovery of fungal community would occur but need a long period of time. Thus, this study highlights the importance of preserving the original natural aquatic ecosystem

    Stream microbial communities and ecosystem functioning show complex responses to multiple stressors in wastewater

    Get PDF
    Multiple anthropogenic drivers are changing ecosystems globally, with a disproportionate and intensifying impact on freshwater habitats. A major impact of urbanization are inputs from wastewater treatment plants (WWTPs). Initially designed to reduce eutrophication and improve water quality, WWTPs increasingly release a multitude of micropollutants (MPs; i.e., synthetic chemicals) and microbes (including antibiotic-resistant bacteria) to receiving environments. This pollution may have pervasive impacts on biodiversity and ecosystem services. Viewed through multiple lenses of macroecological and ecotoxicological theory, we combined field, flume, and laboratory experiments to determine the effects of wastewater (WW) on microbial communities and organic-matter processing using a standardized decomposition assay. First, we conducted a mensurative experiment sampling 60 locations above and below WWTP discharges in 20 Swiss streams. Microbial respiration and decomposition rates were positively influenced by WW inputs via warming and nutrient enrichment, but with a notable exception: WW decreased the activation energy of decomposition, indicating a "slowing" of this fundamental ecosystem process in response to temperature. Second, next-generation sequencing indicated that microbial community structure below WWTPs was altered, with significant compositional turnover, reduced richness, and evidence of negative MP influences. Third, a series of flume experiments confirmed that although diluted WW generally has positive influences on microbial-mediated processes, the negative effects of MPs are "masked" by nutrient enrichment. Finally, transplant experiments suggested that WW-borne microbes enhance decomposition rates. Taken together, our results affirm the multiple stressor paradigm by showing that different aspects of WW (warming, nutrients, microbes, and MPs) jointly influence ecosystem functioning in complex ways. Increased respiration rates below WWTPs potentially generate ecosystem "disservices" via greater carbon evasion from streams and rivers. However, toxic MP effects may fundamentally alter ecological scaling relationships, indicating the need for a rapprochement between ecotoxicological and macroecological perspectives

    Proteomic analysis of differential proteins in pancreatic carcinomas: Effects of MBD1 knock-down by stable RNA interference

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Methyl-CpG binding domain protein 1 (MBD1), a suppressor of gene transcription, may be involved in inactivation of tumor suppressor genes during tumorigenesis. Over-expression of MBD1 has been reported in human pancreatic carcinomas.</p> <p>Methods</p> <p>In this study, we established a MBD1-knock-down pancreatic cancer cell line (BxPC-3) using stable RNA interference, to compare the proteomic changes between control and MBD1-knock-down cells using two-dimensional gel electrophoresis and mass spectrometry.</p> <p>Results</p> <p>We identified five proteins that were up-regulated and nine proteins that were down-regulated. Most of the identified proteins are involved in tumorigenesis, some are prognostic biomarkers for human malignant tumors.</p> <p>Conclusion</p> <p>Our data suggest that these differential proteins may be associated with the function of MBD1, and provide some insight into the functional mechanism of MBD1 in the development of pancreatic cancer.</p

    Bacterial Communities in the Sediments of Dianchi Lake, a Partitioned Eutrophic Waterbody in China

    Get PDF
    Bacteria play an important role in the decomposition and cycling of a variety of compounds in freshwater aquatic environments, particularly nutrient-rich eutrophic lakes. A unique Chinese eutrophic lake - Dianchi - was selected for study because it has two separate and distinct basins, Caohai with higher organic carbon levels and Waihai with lower organic carbon levels. Sediment bacterial communities were studied in the two basins using samples collected in each season from June 2010 to March 2011. Barcoded pyrosequencing based on the 16 S rRNA gene found that certain common phyla, Proteobacteria, Bacteroidetes, Firmicutes and Chloroflexi, were dominant in the sediments from both basins. However, from the class to genus level, the dominant bacterial groups found in the sediments were distinct between the two basins. Correlation analysis revealed that, among the environmental parameters examined, total organic carbon (TOC) accounted for the greatest proportion of variability in bacterial community. Interestingly, study results suggest that increasing allochthonous organic carbon could enhance bacterial diversity and biomass in the sediment. In addition, analysis of function genes (amoA and nosZ) demonstrated that ammonia-oxidizing bacteria (AOB) were dominant in sediments, with 99% belonging to Nitrosomonas. Denitrifying bacteria were comparatively diverse and were associated with some cultivatable bacteria

    International laboratory comparison of influenza microneutralization assays for A(H1N1)pdm09, A(H3N2), and A(H5N1) influenza viruses by CONSISE

    Get PDF
    The microneutralization assay is commonly used to detect antibodies to influenza virus, and multiple protocols are used worldwide. These protocols differ in the incubation time of the assay as well as in the order of specific steps, and even within protocols there are often further adjustments in individual laboratories. The impact these protocol variations have on influenza serology data is unclear. Thus, a laboratory comparison of the 2-day enzyme-linked immunosorbent assay (ELISA) and 3-day hemagglutination (HA) microneutralization (MN) protocols, using A(H1N1)pdm09, A(H3N2), and A(H5N1) viruses, was performed by the CONSISE Laboratory Working Group. Individual laboratories performed both assay protocols, on multiple occasions, using different serum panels. Thirteen laboratories from around the world participated. Within each laboratory, serum sample titers for the different assay protocols were compared between assays to determine the sensitivity of each assay and were compared between replicates to assess the reproducibility of each protocol for each laboratory. There was good correlation of the results obtained using the two assay protocols in most laboratories, indicating that these assays may be interchangeable for detecting antibodies to the influenza A viruses included in this study. Importantly, participating laboratories have aligned their methodologies to the CONSISE consensus 2-day ELISA and 3-day HAMNassay protocols to enable better correlation of these assays in the future

    Integrated metagenomic and physiochemical analyses to evaluate the potential role of microbes in the sand filter of a drinking water treatment system.

    Get PDF
    While sand filters are widely used to treat drinking water, the role of sand filter associated microorganisms in water purification has not been extensively studied. In the current investigation, we integrated molecular (based on metagenomic) and physicochemical analyses to elucidate microbial community composition and function in a common sand filter used to treat groundwater for potable consumption. The results revealed that the biofilm developed rapidly within 2 days (reaching ≈ 10(11) prokaryotes per gram) in the sand filter along with abiotic and biotic particulates accumulated in the interstitial spaces. Bacteria (up to 90%) dominated the biofilm microbial community, with Alphaproteobacteria being the most common class. Thaumarchaeota was the sole phylum of Archaea, which might be involved in ammonia oxidation. Function annotation of metagenomic datasets revealed a number of aromatic degradation pathway genes, such as aromatic oxygenase and dehydrogenase genes, in the biofilm, suggesting a significant role for microbes in the breakdown of aromatic compounds in groundwater. Simultaneous nitrification and denitrification pathways were confirmed as the primary routes of nitrogen removal. Dissolved heavy metals in groundwater, e.g. Mn(2+) and As(3+), might be biologically oxidized to insoluble or easily adsorbed compounds and deposited in the sand filter. Our study demonstrated that the role of the microbial community in the sand filter treatment system are critical to effective water purification in drinking water

    Metal-Organic Framework-Derived Sea-Cucumber-like FeS2@C Nanorods with Outstanding Pseudocapacitive Na-Ion Storage Properties

    Get PDF
    Sodium-ion batteries (SIBs) are supposed to be attractive energy strorage and supply devices due to the abundant reserves of sodium. Their limited specific capacity and rate capacity, however, are standing in the way of the extensive application of SIBs. It is reported herein that porous sea-cucumber-like FeS2@C nanorods can act as efficient cathode materials to satisfy the rigorous requirements of the proposed applications. The fabrication of the sea-cucumber-like FeS2@C nanorods involves the hydrothermal growth of F-MIL (where F = Fe, MIL = materials from the Lavoisier Institute) nanorods, and subsequent sulfidation. The electrochemical results demonstrate that the FeS2@C nanorods are an outstanding cathode material for SIBs with high specific capacity (385 mAh/g), ultralong lifetime (160 mAh/g after 10 000 cycles at 20 A/g), and exceptional rate capability. The metal−organic framework (MOF) template method provides a useful route toward the development of high-performance electrode materials with robust power and cyclability
    • …
    corecore