75 research outputs found

    Time-history simulation of civil architecture earthquake disaster relief- based on the three-dimensional dynamic finite element method

    Get PDF
    Earthquake action is the main external factor which influences long-term safe operation of civil construction, especially of the high-rise building. Applying time-history method to simulate earthquake response process of civil construction foundation surrounding rock is an effective method for the anti-knock study of civil buildings. Therefore, this paper develops a civil building earthquake disaster three-dimensional dynamic finite element numerical simulation system. The system adopts the explicit central difference method. Strengthening characteristics of materials under high strain rate and damage characteristics of surrounding rock under the action of cyclic loading are considered. Then, dynamic constitutive model of rock mass suitable for civil building aseismic analysis is put forward. At the same time, through the earthquake disaster of time-history simulation of Shenzhen Children’s Palace, reliability and practicability of system program is verified in the analysis of practical engineering problems

    Study on evaporation drainage of deep coal seam gas wells

    Get PDF
    Targeting the problem of a small amount of fluid accumulation in deep coal seam gas (CSG) wells during flowing production stage, the evaporation drainage method is proposed to discharge the liquid accumulation. Based on the Dalton evaporation model and wind speed function, a calculation model of evaporation drainage was established for deep CSG wells, which was verified by laboratory experiments. Taking a CSG well in the western Ordos Basin as an example to analyze the evaporation drainage capacity, the influence of temperature, daily gas production, bottomhole flowing pressure (BHFP), formation gas water saturation on the evaporation drainage capacity was investigated. The results show that the maximum evaporation water production is 2,533.8 kg/d at a bottomhole temperature of 80°C and a gas production rate of 30 × 103 m3/d. It is found that the temperature and pressure have a marked influence on the evaporation drainage. By improving the gas production and bottomhole temperature, and reducing the BHFP can effectively promote the evaporation drainage capacity. The initial moisture content of CSG in the reservoir are inversely proportional to the evaporation drainage capacity. By adjusting the BHFP and daily gas production, the evaporation drainage capacity can match the liquid production rate of the formation. Evaporation drainage can effectively extend the flowing production time of deep CSG wells and reduce the costs of production

    Real-time Monitoring for the Next Core-Collapse Supernova in JUNO

    Full text link
    Core-collapse supernova (CCSN) is one of the most energetic astrophysical events in the Universe. The early and prompt detection of neutrinos before (pre-SN) and during the SN burst is a unique opportunity to realize the multi-messenger observation of the CCSN events. In this work, we describe the monitoring concept and present the sensitivity of the system to the pre-SN and SN neutrinos at the Jiangmen Underground Neutrino Observatory (JUNO), which is a 20 kton liquid scintillator detector under construction in South China. The real-time monitoring system is designed with both the prompt monitors on the electronic board and online monitors at the data acquisition stage, in order to ensure both the alert speed and alert coverage of progenitor stars. By assuming a false alert rate of 1 per year, this monitoring system can be sensitive to the pre-SN neutrinos up to the distance of about 1.6 (0.9) kpc and SN neutrinos up to about 370 (360) kpc for a progenitor mass of 30MM_{\odot} for the case of normal (inverted) mass ordering. The pointing ability of the CCSN is evaluated by using the accumulated event anisotropy of the inverse beta decay interactions from pre-SN or SN neutrinos, which, along with the early alert, can play important roles for the followup multi-messenger observations of the next Galactic or nearby extragalactic CCSN.Comment: 24 pages, 9 figure

    Potential of Core-Collapse Supernova Neutrino Detection at JUNO

    Get PDF
    JUNO is an underground neutrino observatory under construction in Jiangmen, China. It uses 20kton liquid scintillator as target, which enables it to detect supernova burst neutrinos of a large statistics for the next galactic core-collapse supernova (CCSN) and also pre-supernova neutrinos from the nearby CCSN progenitors. All flavors of supernova burst neutrinos can be detected by JUNO via several interaction channels, including inverse beta decay, elastic scattering on electron and proton, interactions on C12 nuclei, etc. This retains the possibility for JUNO to reconstruct the energy spectra of supernova burst neutrinos of all flavors. The real time monitoring systems based on FPGA and DAQ are under development in JUNO, which allow prompt alert and trigger-less data acquisition of CCSN events. The alert performances of both monitoring systems have been thoroughly studied using simulations. Moreover, once a CCSN is tagged, the system can give fast characterizations, such as directionality and light curve

    Detection of the Diffuse Supernova Neutrino Background with JUNO

    Get PDF
    As an underground multi-purpose neutrino detector with 20 kton liquid scintillator, Jiangmen Underground Neutrino Observatory (JUNO) is competitive with and complementary to the water-Cherenkov detectors on the search for the diffuse supernova neutrino background (DSNB). Typical supernova models predict 2-4 events per year within the optimal observation window in the JUNO detector. The dominant background is from the neutral-current (NC) interaction of atmospheric neutrinos with 12C nuclei, which surpasses the DSNB by more than one order of magnitude. We evaluated the systematic uncertainty of NC background from the spread of a variety of data-driven models and further developed a method to determine NC background within 15\% with {\it{in}} {\it{situ}} measurements after ten years of running. Besides, the NC-like backgrounds can be effectively suppressed by the intrinsic pulse-shape discrimination (PSD) capabilities of liquid scintillators. In this talk, I will present in detail the improvements on NC background uncertainty evaluation, PSD discriminator development, and finally, the potential of DSNB sensitivity in JUNO

    Research on new technology for offshore heavy oil thermal recovery with rod pumping

    No full text
    Abstract The high-efficient development of heavy oil is difficult for offshore oil field. Based on the mature technology of onshore heavy oil thermal recovery, a new rod pumping technology of “heavy oil steam stimulation along with conventional sucker rod pumping system” is proposed. According to the structure space of aimed offshore platform, we designed one new kind of miniature hydraulic pumping unit with long-stroke, low pumping speed and compact structure. The paper also studies the offshore heavy oil thermal recovery well safety technology, establishes a leakage model of wellhead sealing and a mechanical model of sealed rubber sleeve on downhole nonlinear large deformation. The study shows that a series of equipment for offshore rod pumping oil recovery and the key technology of well safety lay a solid foundation for carrying out rod pumping of offshore heavy oil thermal recovery

    Study of a new hydraulic pumping unit based on the offshore platform

    No full text
    This article introduces a new technology about a rod pumping in the offshore platform according to the demand of offshore heavy oil thermal recovery and the production of stripper well, analyzes the research status of hydraulic pumping unit at home and abroad, and designs a new kind of miniature hydraulic pumping unit with long-stroke, low pumping speed and compact structure to resolve the problem of space limitation. The article also describes the whole structure and the working principle of this pumping unit, determines the choice of stroke and rate of the pumping unit, and establishes mathematical models based on the polished rod loads. A new composite hydraulic cylinder with a special structure was designed by combining the hydraulic cylinder with the energy accumulator. This composite hydraulic cylinder is applied on land, and the model prototype runs smoothly, which indicates that the whole structure design of the pumping unit is reasonable and the control strategy is correct

    Study on Key Parameters for Jet Impacting Pulverized Coal Deposited in Coal-Bed Methane Wells

    No full text
    Cleaning out the pulverized coal deposited at the bottom of a coalbed methane (CBM) well is key to achieving continuous CBM drainage and prolonging the workover period. In this study, Fluent is used in conjunction with the standard k-ε model and the Eulerian-Eulerian model to simulate and analyse jet erosion of deposited pulverized coal particles. The depth and width of the stable erosion pit that is formed by jet-impacting deposited pulverized coal under different conditions are determined and provide a theoretical basis for the cleanout of pulverized coal in the bottom of a CBM well. In this paper, the three parameters of the jet target distance, nozzle diameter and nozzle outlet flow velocity are selected to perform an orthogonal simulation. The change trends in the depth and width of the scouring pit with time are determined. The results show that jet impacting of deposited pulverized coal can be categorised into four stages, periods of rapid growth, stability, jet swing and dynamic stability. A sensitivity analysis shows that the nozzle outlet flow velocity has the strongest influence on the depth of the scouring pit among the selected parameters. The depth of the jet impact pit can reach the maximum depth at t = 3 s, while the width of the impact pit can reach the maximum after t = 7 s. This can provide key design parameters for CBM well pulverized coal impacting operation. It is of great significance for capacity damage control during CBM well workover operation

    Study on Variable Stress Corrosion Susceptibility of Four Typical High-Strength Sucker Rods in High-Salinity Well Fluids

    No full text
    To study the corrosion characteristics of high-strength sucker rods in high-salinity well fluids under alternating stresses, a single-factor stress corrosion test was designed. The slow strain rate tensile test (SSRT) was carried out for four kinds of high-strength sucker rods under different Cl− and HCO3− concentrations and with different service strengths, and the variable stress corrosion cracking susceptibility was analyzed. The results show that the elongation loss and absorbed work loss of the H-grade ultra-high-strength 4330 sucker rod after stress corrosion are greater than those of both the high-strength 4142 sucker rod and the high-strength 20CrMoA sucker rod. The elongation and absorbed work loss of the 30CrMoA and 20CrMoA sucker rods are less affected by the changes in Cl− and HCO3−. With the increase in use strength, the elongation and absorbed work loss of the high-strength sucker rod increase. The change in the surface of the sucker rod during the corrosion process is inconsistent with the actual elongation of the sucker rod and the absorbed work loss. It can be concluded that the stress corrosion cracking susceptibility of the sucker rod is not necessarily related to the tensile strength of the sucker rod. The 4330 sucker rod is not suitable for applications in wells with a high concentration of Cl−, but it is suitable for operation in alkaline conditions where corrosive media such as HCO3− and Cl− coexist. Under highly corrosive and highly mineralized conditions, the 30CrMoA sucker rod is less susceptible to stress corrosion. The stress corrosion cracking susceptibility of the 20CrMoA sucker rod is lower than that of the 4142 sucker rod. In high-salinity well fluids, the higher the use strength, the higher the stress corrosion cracking susceptibility of the high-strength sucker rod is. The test results for the weight-loss-based corrosion rate and plastic loss may contradict the determination of the corrosion susceptibility of the material under working conditions

    Sacral neuromodulation remote programming in patients with refractory lower urinary tract dysfunction: China’s experience during the COVID-19 pandemic

    Get PDF
    ObjectivesSacral neuromodulation is an effective, minimally invasive treatment for refractory lower urinary tract dysfunction. However, regular postoperative programming is crucial for the maintenance of the curative effects of electronic sacral stimulator devices. The outbreak of coronavirus disease 2019 (COVID-19) limited the ability of practitioners to perform traditional face-to-face programming of these stimulators. Therefore, this study aimed to evaluate the application of remote programming technology for sacral neuromodulation during the COVID-19 pandemic in China.Materials and methodsWe retrospectively collected data including baseline and programming information of all patients with lower urinary tract dysfunction who underwent sacral neuromodulation remote programming in China after the outbreak of COVID-19 (i.e., December 2019). The patients also completed a self-designed telephone questionnaire on the subject.ResultsA total of 51 patients from 16 centers were included. They underwent 180 total remote programming visits, and 118, 2, 25, and 54 voltage, current, pulse width, and frequency adjustments, respectively, were performed. Additionally, remote switching on and off was performed 8 times; impedance test, 54 times; and stimulation contact replacement, 25 times. The demand for remote programming was the highest during the first 6 months of sacral neuromodulation (average, 2.39 times per person). In total, 36 out of the 51 patients completed the questionnaire survey. Of these, all indicated that they chose remote programming to minimize unnecessary travel because they had been affected by COVID-19. The questionnaire also showed that remote programming could reduce the number of patient visits to the hospital, save time, reduce financial costs, and would be easy for patients to master. All surveyed patients indicated that they were satisfied with remote programming and were willing to recommend it to other patients.ConclusionRemote programming for sacral neuromodulation is feasible, effective, safe, and highly recommended by patients with refractory lower urinary tract dysfunction. Remote programming technology has great development and application potential in the post-pandemic era
    corecore