23 research outputs found

    Yttrium Anilido Hydride: Synthesis, Structure, and Reactivity

    No full text
    The synthesis, structure, and reactivity of the yttrium anilido hydride [LY(NH(DIPP))(μ-H)]<sub>2</sub> (<b>3</b>; L = [MeC(N(DIPP))CHC(Me)(NCH<sub>2</sub>CH<sub>2</sub>NMe<sub>2</sub>)]<sup>−</sup>, DIPP = 2,6-<sup><i>i</i></sup>Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)) are reported. The protonolysis reaction of the yttrium dialkyl [LY(CH<sub>2</sub>SiMe<sub>3</sub>)<sub>2</sub>] (<b>1</b>) with 1 equiv of 2,6-diisopropylaniline gave the yttrium anilido alkyl [LY(NH(DIPP))(CH<sub>2</sub>SiMe<sub>3</sub>)] (<b>2</b>), and a subsequent σ-bond metathesis reaction of <b>2</b> with 1 equiv of PhSiH<sub>3</sub> offered the yttrium anilido hydride <b>3</b>. The structure of <b>3</b> was characterized by X-ray crystallography, which showed that the complex is a μ-H dimer. <b>3</b> shows high reactivity toward a variety of unsaturated substrates, including imine, azobenzene, carbodiimide, isocyanide, ketone, and Mo(CO)<sub>6</sub>, giving some structurally intriguing products

    Tris(boratabenzene) Lanthanum Complexes: Synthesis, Structure, and Reactivity

    No full text
    A series of tris­(boratabenzene) lanthanum complexes were synthesized and structurally characterized. Salt elimination of anhydrous LaCl<sub>3</sub> with Li­[C<sub>5</sub>H<sub>5</sub>BR] (R = H, NEt<sub>2</sub>) provided tris­(boratabenzene) lanthanum complexes [C<sub>5</sub>H<sub>5</sub>BH]<sub>3</sub>­LaLiCl (<b>1</b>) and [C<sub>5</sub>H<sub>5</sub>BNEt<sub>2</sub>]<sub>3</sub>­LaLiCl­(THF) (<b>2</b>) in high yields. Hydroboration of 1-hexene or 3-hexyne with <b>1</b> gave the alkyl- or alkenyl-functionalized boratabenzene lanthanum complexes, [C<sub>5</sub>H<sub>5</sub>B­(CH<sub>2</sub>)<sub>5</sub>CH<sub>3</sub>]<sub>3</sub>­LaLiCl­(THF) (<b>3</b>) and [C<sub>5</sub>H<sub>5</sub>BC­(C<sub>2</sub>H<sub>5</sub>)CH­(C<sub>2</sub>H<sub>5</sub>)]<sub>3</sub>­LaLiCl­(THF) (<b>4</b>), in good yields. Hydroboration of <i>N</i>,<i>N</i>′-diisopropylcarbodiimide with <b>1</b> gave the monohydroboration product [C<sub>5</sub>H<sub>5</sub>BN­(<sup><i>i</i></sup>Pr)­CHN­(<sup><i>i</i></sup>Pr)]­[C<sub>5</sub>H<sub>5</sub>BH]<sub>2</sub>La (<b>5</b>) due to the steric bulk of the [C<sub>5</sub>H<sub>5</sub>BN­(<sup><i>i</i></sup>Pr)­CHN­(<sup><i>i</i></sup>Pr)]<sup>−</sup> ligand. Complex <b>5</b> can undergo further hydroboration with 3-hexyne or dehydrogenative coupling with phenyl acetylene to afford [C<sub>5</sub>H<sub>5</sub>BN­(<sup><i>i</i></sup>Pr)­CHN­(<sup><i>i</i></sup>Pr)]­[C<sub>5</sub>H<sub>5</sub>BC­(C<sub>2</sub>H<sub>5</sub>)CH­(C<sub>2</sub>H<sub>5</sub>)]<sub>2</sub>La (<b>6</b>) or [C<sub>5</sub>H<sub>5</sub>BN­(<sup><i>i</i></sup>Pr)­CHN­(<sup><i>i</i></sup>Pr)]­[C<sub>5</sub>H<sub>5</sub>BCCPh)]<sub>2</sub>La (<b>7</b>)

    1‑Methyl Boratabenzene Yttrium Alkyl: A Highly Active Catalyst for Dehydrocoupling of Me<sub>2</sub>NH·BH<sub>3</sub>

    No full text
    Catalytic activity of rare-earth metal complexes for dehydrocoupling of Me<sub>2</sub>NH·BH<sub>3</sub> is deeply ligand- and metal ion-dependent, and 1-methyl boratabenzene yttrium alkyl shows very high activity for the reaction (TOF > 1000 h<sup>–1</sup>). The transformation of Me<sub>2</sub>NH·BH<sub>3</sub> into [Me<sub>2</sub>N–BH<sub>2</sub>]<sub>2</sub> proceeds through an intermediate Me<sub>2</sub>NH–BH<sub>2</sub>–NMe<sub>2</sub>–BH<sub>3</sub>

    Synthesis and Structure of Silicon-Bridged Boratabenzene Fluorenyl Rare-Earth Metal Complexes

    No full text
    A silicon-bridged boratabenzene fluorenyl ligand [Me<sub>2</sub>Si­(C<sub>13</sub>H<sub>8</sub>)­(C<sub>5</sub>H<sub>4</sub>BNEt<sub>2</sub>)]<sup>2–</sup> (<b>L</b><sup>2–</sup>) was designed and synthesized. By employment of this ligand, two divalent rare-earth metal complexes [Me<sub>2</sub>Si­(C<sub>13</sub>H<sub>8</sub>)­(C<sub>5</sub>H<sub>4</sub>BNEt<sub>2</sub>)]­Ln­(THF)<sub>2</sub> (Ln = Sm (<b>1</b>), Yb (<b>2</b>)) were obtained from salt metathesis of K<sub>2</sub>[Me<sub>2</sub>Si­(C<sub>13</sub>H<sub>8</sub>)­(C<sub>5</sub>H<sub>4</sub>BNEt<sub>2</sub>)] (<b>K</b><sub><b>2</b></sub><b>L</b>) with LnI<sub>2</sub>­(THF)<sub>2</sub> in THF. Complex <b>2</b> undergoes redox reaction with cyclooctatetraene to give a trivalent Yb complex [(C<sub>8</sub>H<sub>8</sub>)­Yb]<sub>2</sub>­[μ-{Me<sub>2</sub>Si­(C<sub>13</sub>H<sub>8</sub>)­(C<sub>5</sub>H<sub>4</sub>BNEt<sub>2</sub>)}<sub>2</sub>] (<b>3</b>), accompanied with oxidative coupling of two fluorenyl groups. A series of chloro-bridged trimeric trivalent rare-earth metal complexes [Li­(THF)<sub>4</sub>]<sub>2</sub>­[{[Me<sub>2</sub>Si­(C<sub>13</sub>H<sub>8</sub>)­(C<sub>5</sub>H<sub>4</sub>BNEt<sub>2</sub>)]­Ln­(μ-Cl)­Li­(THF)<sub>3</sub>}<sub>3</sub>­(μ-Cl)<sub>3</sub>­(μ<sub>3</sub>-Cl)<sub>2</sub>] (Ln = Nd (<b>4</b>), Sm (<b>5</b>), and Gd (<b>6</b>)) were synthesized by reactions of Li<sub>2</sub>[Me<sub>2</sub>Si­(C<sub>13</sub>H<sub>8</sub>)­(C<sub>5</sub>H<sub>4</sub>BNEt<sub>2</sub>)] (<b>Li</b><sub><b>2</b></sub><b>L</b>) with LnCl<sub>3</sub> in THF. Treatment of K<sub>2</sub>[Me<sub>2</sub>Si­(C<sub>13</sub>H<sub>8</sub>)­(C<sub>5</sub>H<sub>4</sub>BNEt<sub>2</sub>)] (<b>K</b><sub><b>2</b></sub><b>L</b>) with LnI<sub>3</sub>(THF)<sub><i>n</i></sub> gave the monomeric complexes [Me<sub>2</sub>Si­(C<sub>13</sub>H<sub>8</sub>)­(C<sub>5</sub>H<sub>4</sub>BNEt<sub>2</sub>)]­LnI­(THF) (Ln = La (<b>7</b>), Nd (<b>8</b>), Sm (<b>9</b>), and Gd (<b>10</b>)). These iodides were subsequently reacted with K­[CH<sub>2</sub>C<sub>6</sub>H<sub>4</sub>-<i>o</i>-NMe<sub>2</sub>] to afford THF coordinated benzyl complexes [Me<sub>2</sub>Si­(C<sub>13</sub>H<sub>8</sub>)­(C<sub>5</sub>H<sub>4</sub>BNEt<sub>2</sub>)]­Ln­(CH<sub>2</sub>C<sub>6</sub>H<sub>4</sub>-<i>o</i>-NMe<sub>2</sub>)­(THF) (Ln = La (<b>11</b>), Nd (<b>12</b>), and Gd (<b>13a</b>)) and non-THF coordinated complex [Me<sub>2</sub>Si­(C<sub>13</sub>H<sub>8</sub>)­(C<sub>5</sub>H<sub>4</sub>BNEt<sub>2</sub>)]­Gd­(CH<sub>2</sub>C<sub>6</sub>H<sub>4</sub>-<i>o</i>-NMe<sub>2</sub>) (<b>13b</b>)

    C–P or C–H Bond Cleavage of Phosphine Oxides Mediated by an Yttrium Hydride

    No full text
    Reactions of the yttrium anilido hydride [LY­(NH­(DIPP))­(μ-H)]<sub>2</sub> (<b>1</b>; L = [MeC­(N­(DIPP))­CHC­(Me)­(NCH<sub>2</sub>CH<sub>2</sub>NMe<sub>2</sub>)]<sup>−</sup>, DIPP = 2,6-<sup>i</sup>Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)) with three phosphine oxides and two phosphine sulfides are reported. The reaction of <b>1</b> with Ph<sub>3</sub>PO gives C–P bond cleavage and an yttrium anilido phosphinoyl complex, while those with R<sub>2</sub>MePO (R = Me, Ph) result in C–H bond cleavage and two yttrium anilido alkyl complexes. <b>1</b> also reacted with R<sub>3</sub>PS (R = Me, Ph), which demonstrated P–S bond cleavage via hydride-based reduction and gave an yttrium anilido sulfide

    Synthesis and Structure of Silicon-Bridged Boratabenzene Fluorenyl Rare-Earth Metal Complexes

    No full text
    A silicon-bridged boratabenzene fluorenyl ligand [Me<sub>2</sub>Si­(C<sub>13</sub>H<sub>8</sub>)­(C<sub>5</sub>H<sub>4</sub>BNEt<sub>2</sub>)]<sup>2–</sup> (<b>L</b><sup>2–</sup>) was designed and synthesized. By employment of this ligand, two divalent rare-earth metal complexes [Me<sub>2</sub>Si­(C<sub>13</sub>H<sub>8</sub>)­(C<sub>5</sub>H<sub>4</sub>BNEt<sub>2</sub>)]­Ln­(THF)<sub>2</sub> (Ln = Sm (<b>1</b>), Yb (<b>2</b>)) were obtained from salt metathesis of K<sub>2</sub>[Me<sub>2</sub>Si­(C<sub>13</sub>H<sub>8</sub>)­(C<sub>5</sub>H<sub>4</sub>BNEt<sub>2</sub>)] (<b>K</b><sub><b>2</b></sub><b>L</b>) with LnI<sub>2</sub>­(THF)<sub>2</sub> in THF. Complex <b>2</b> undergoes redox reaction with cyclooctatetraene to give a trivalent Yb complex [(C<sub>8</sub>H<sub>8</sub>)­Yb]<sub>2</sub>­[μ-{Me<sub>2</sub>Si­(C<sub>13</sub>H<sub>8</sub>)­(C<sub>5</sub>H<sub>4</sub>BNEt<sub>2</sub>)}<sub>2</sub>] (<b>3</b>), accompanied with oxidative coupling of two fluorenyl groups. A series of chloro-bridged trimeric trivalent rare-earth metal complexes [Li­(THF)<sub>4</sub>]<sub>2</sub>­[{[Me<sub>2</sub>Si­(C<sub>13</sub>H<sub>8</sub>)­(C<sub>5</sub>H<sub>4</sub>BNEt<sub>2</sub>)]­Ln­(μ-Cl)­Li­(THF)<sub>3</sub>}<sub>3</sub>­(μ-Cl)<sub>3</sub>­(μ<sub>3</sub>-Cl)<sub>2</sub>] (Ln = Nd (<b>4</b>), Sm (<b>5</b>), and Gd (<b>6</b>)) were synthesized by reactions of Li<sub>2</sub>[Me<sub>2</sub>Si­(C<sub>13</sub>H<sub>8</sub>)­(C<sub>5</sub>H<sub>4</sub>BNEt<sub>2</sub>)] (<b>Li</b><sub><b>2</b></sub><b>L</b>) with LnCl<sub>3</sub> in THF. Treatment of K<sub>2</sub>[Me<sub>2</sub>Si­(C<sub>13</sub>H<sub>8</sub>)­(C<sub>5</sub>H<sub>4</sub>BNEt<sub>2</sub>)] (<b>K</b><sub><b>2</b></sub><b>L</b>) with LnI<sub>3</sub>(THF)<sub><i>n</i></sub> gave the monomeric complexes [Me<sub>2</sub>Si­(C<sub>13</sub>H<sub>8</sub>)­(C<sub>5</sub>H<sub>4</sub>BNEt<sub>2</sub>)]­LnI­(THF) (Ln = La (<b>7</b>), Nd (<b>8</b>), Sm (<b>9</b>), and Gd (<b>10</b>)). These iodides were subsequently reacted with K­[CH<sub>2</sub>C<sub>6</sub>H<sub>4</sub>-<i>o</i>-NMe<sub>2</sub>] to afford THF coordinated benzyl complexes [Me<sub>2</sub>Si­(C<sub>13</sub>H<sub>8</sub>)­(C<sub>5</sub>H<sub>4</sub>BNEt<sub>2</sub>)]­Ln­(CH<sub>2</sub>C<sub>6</sub>H<sub>4</sub>-<i>o</i>-NMe<sub>2</sub>)­(THF) (Ln = La (<b>11</b>), Nd (<b>12</b>), and Gd (<b>13a</b>)) and non-THF coordinated complex [Me<sub>2</sub>Si­(C<sub>13</sub>H<sub>8</sub>)­(C<sub>5</sub>H<sub>4</sub>BNEt<sub>2</sub>)]­Gd­(CH<sub>2</sub>C<sub>6</sub>H<sub>4</sub>-<i>o</i>-NMe<sub>2</sub>) (<b>13b</b>)

    Reversible Addition of the Si–H Bond of Phenylsilane to the ScN Bond of a Scandium Terminal Imido Complex

    No full text
    The facile and reversible addition of the Si–H bond of phenylsilane to the ScN bond of the scandium terminal imido complex [LScNDIPP­(DMAP)] (<b>1</b>; L  [MeC­(N­(DIPP))­CHC­(Me)­(NCH<sub>2</sub>CH<sub>2</sub>NMe)]<sup>−</sup>, DIPP = 2,6-<sup><i>i</i></sup>Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub>) is reported. The reaction gives the scandium anilido hydride [LSc­(H)­(N­(DIPP)­(SiH<sub>2</sub>Ph))] (<b>2</b>), and a labeling experiment shows a rapid σ-bond metathesis between Sc–H of the formed scandium anilido hydride and Si–H of phenylsilane during the reaction. <b>2</b> was trapped by an insertion reaction with diphenylcarbodiimide, giving the stable scandium anilido amidinate [LSc­(N­(DIPP)­(SiH<sub>2</sub>Ph))­(κ<sup>2</sup>(<i>N</i>,<i>N</i>′)-PhNCHNPh)] (<b>3</b>). Furthermore, the scandium terminal imido complex can efficiently catalyze the hydrosilylation of <i>N</i>-benzylidenepropan-1-amine. The reaction was completed within 2 h at 50 °C with 5 mol % of catalyst loading and highly selectively produced the monoaminosilane

    Reactivity of Scandium Terminal Imido Complex toward Boranes: C(sp<sup>3</sup>)–H Bond Borylation and B–O Bond Cleavage

    No full text
    Scandium terminal imido complex [(NNNN)­ScNDIPP] (<b>2</b>; NNNN = [MeC­(N­(DIPP))­CHC­(Me)­(NCH<sub>2</sub>CH<sub>2</sub>NMeCH<sub>2</sub>CH<sub>2</sub>NMe<sub>2</sub>)]<sup>−</sup>, DIPP = 2,6-<sup><i>i</i></sup>Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub>) reacts with 9-borabicyclononane (9-BBN) to give scandium borohydride [(NNNN­(B)­H)­Sc­(N­(H)­DIPP)] (<b>3</b>; NNNN­(B)H = [MeC­(N­(DIPP))­CHC­(Me)­(NCH<sub>2</sub>CH<sub>2</sub>NMeCH<sub>2</sub>CH<sub>2</sub>N­(Me)­CH<sub>2</sub>(BBN)]<sup>2–</sup>), and C­(sp<sup>3</sup>)–H bond borylation of the NNNN ligand occurs during this reaction. In contrast, the reaction between complex <b>2</b> and catecholborane (CatBH) gives scandium catecholate [(NNNN)­Sc­(Cat)] (<b>4</b>), and B–O bond cleavage happens during this reaction. Both <b>3</b> and <b>4</b> have been well-characterized including the single-crystal X-ray diffraction analysis. Reaction of <b>2</b> with bis­(catecholato)­diboron (CatB–BCat) also gives a B–O bond cleavage product

    A Scandium Complex Bearing Both Methylidene and Phosphinidene Ligands: Synthesis, Structure, and Reactivity

    No full text
    The scandium complex bearing both methylidene and phosphinidene ligands, [(LSc)<sub>2</sub>­(μ<sub>2</sub>-CH<sub>2</sub>)­(μ<sub>2</sub>-PDIPP)] (L = [MeC­(NDIPP)­CHC­(NDIPP)­Me]<sup>−</sup>, DIPP = 2,6-(<sup><i>i</i></sup>Pr)<sub>2</sub>C<sub>6</sub>H<sub>3</sub>) (<b>2</b>), has been synthesized, and its reactivity has been investigated. Reaction of scandium methyl phosphide [LSc­(Me)­{P­(H)­DIPP}] with 1 equiv of scandium dimethyl complex [LScMe<sub>2</sub>] in toluene at 60 °C provided complex <b>2</b> in good yield, and the structure of complex <b>2</b> was determined by single-crystal X-ray diffraction. Complex <b>2</b> easily undergoes nucleophilic addition reactions with CO<sub>2</sub>, CS<sub>2</sub>, benzonitrile, and <i>tert</i>-butyl isocyanide. In the above reactions, the unsaturated substrates insert into the Sc–C­(methylidene) bond to give some interesting dianionic ligands while the Sc–P­(phosphinidene) bond remains untouched. The bonding situation of complex <b>2</b> was analyzed using DFT methods, indicating a more covalent bond between the scandium ion and the phosphinidene ligand than between the scandium ion and the methyl­idene ligand

    Nonchelated Phosphoniomethylidene Complexes of Scandium and Lutetium

    No full text
    The first phosphoniomethylidene complexes of scandium and lutetium, [<b>L</b>Ln­(CHPPh<sub>3</sub>)­X] (<b>L</b> = [MeC­(NDIPP)­CHC­(NDIPP)­Me]<sup>−</sup>; Ln = Sc, X = Me, I, TfO; Ln = Lu, X = CH<sub>2</sub>SiMe<sub>3</sub>), have been synthesized and fully characterized. DFT calculations clearly demonstrate the presence of an allylic Ln, C, P π-type interaction in these complexes. X-ray diffraction indicates that the scandium iodide complex has the shortest Sc–C bond length to date (2.044(5) Å). These phosphoniomethylidene complexes readily convert into the ylide complexes, and the reactivity is affected by both X<sup>–</sup> anion and Ln<sup>3+</sup> ion. The reaction of lutetium complex with imine shows a rapid insertion of imine into the Lu–C­(alkylidene) bond. DFT calculations indicate that, although the bonding situation seems similar to that of the scandium analog, the strong negative charge at the alkylidene carbon is not sufficiently screened by one hydrogen in the lutetium complex because of a more ionic bonding, and therefore, the reactivity of the lutetium complex is much higher
    corecore