145 research outputs found

    Effect of physical exercise under different intensity and antioxidative supplementation for plasma superoxide dismutase in healthy adults:systematic review and network meta-analysis

    Get PDF
    BACKGROUND: The dynamic balance between oxidation and anti-oxidation in the body’s internal environment has a significant meaning for human health. Physical exercise and antioxidative supplementation could affect the balance of oxidation and anti-oxidation systems. The evidence on the effects of physical exercise and antioxidative supplementation is mixed. AIMS: To identify the effects of physical exercise, antioxidative supplementation, and their combination on the dynamic balance between oxidation and anti-oxidation in different subgroups of healthy adults. METHODS: All studies which reported randomized controlled trials with healthy participants were screened and included from the databases of PubMed, Medline, Embase, and Ovid. All participants were reclassified according to their different daily life activities. All physical exercise interventions were reclassified according to the intensity. The effect size would be calculated in percent or factor units from the mean level change with its associated random-effect variance. RESULT: There were 27 studies included in this review. The agreement between authors by using The Cochrane Collaboration Risk of Bias Assessment Tool reached a kappa-value of 0.72. Maintaining a regular physical exercise routine in an appropriate intensity would be beneficial to the body’s anti-oxidative potential. Anti-oxidative supplementation could have some positive but limited effects on the body’s anti-oxidative status and complex interaction with physical exercise. CONCLUSION: Keeping a regular physical exercise routine and gradually increasing its intensity according to the individual’s daily life activity might be a better choice to maintain and enhancing the body’s antioxidation potential, only using anti-oxidative supplementation is not recommended. More research is needed to explore the best combination protocol. REGISTRATION NUMBER: CRD42021241995

    PRUB: A Privacy Protection Friend Recommendation System Based on User Behavior

    Get PDF
    The fast developing social network is a double-edged sword. It remains a serious problem to provide users with excellent mobile social network services as well as protecting privacy data. Most popular social applications utilize behavior of users to build connection with people having similar behavior, thus improving user experience. However, many users do not want to share their certain behavioral information to the recommendation system. In this paper, we aim to design a secure friend recommendation system based on the user behavior, called PRUB. The system proposed aims at achieving fine-grained recommendation to friends who share some same characteristics without exposing the actual user behavior. We utilized the anonymous data from a Chinese ISP, which records the user browsing behavior, for 3 months to test our system. The experiment result shows that our system can achieve a remarkable recommendation goal and, at the same time, protect the privacy of the user behavior information

    Explaining the differences of gait patterns between high and low-mileage runners with machine learning

    Get PDF
    Running gait patterns have implications for revealing the causes of injuries between higher-mileage runners and low-mileage runners. However, there is limited research on the possible relationships between running gait patterns and weekly running mileages. In recent years, machine learning algorithms have been used for pattern recognition and classification of gait features to emphasize the uniqueness of gait patterns. However, they all have a representative problem of being a black box that often lacks the interpretability of the predicted results of the classifier. Therefore, this study was conducted using a Deep Neural Network (DNN) model and Layer-wise Relevance Propagation (LRP) technology to investigate the differences in running gait patterns between higher-mileage runners and low-mileage runners. It was found that the ankle and knee provide considerable information to recognize gait features, especially in the sagittal and transverse planes. This may be the reason why high-mileage and low-mileage runners have different injury patterns due to their different gait patterns. The early stages of stance are very important in gait pattern recognition because the pattern contains effective information related to gait. The findings of the study noted that LRP completes a feasible interpretation of the predicted results of the model, thus providing more interesting insights and more effective information for analyzing gait patterns

    A new method applied for explaining the landing patterns:interpretability analysis of machine learning

    Get PDF
    As one of many fundamental sports techniques, the landing maneuver is also frequently used in clinical injury screening and diagnosis. However, the landing patterns are different under different constraints, which will cause great difficulties for clinical experts in clinical diagnosis. Machine learning (ML) have been very successful in solving a variety of clinical diagnosis tasks, but they all have the disadvantage of being black boxes and rarely provide and explain useful information about the reasons for making a particular decision. The current work validates the feasibility of applying an explainable ML (XML) model constructed by Layer-wise Relevance Propagation (LRP) for landing pattern recognition in clinical biomechanics. This study collected 560 groups landing data. By incorporating these landing data into the XML model as input signals, the prediction results were interpreted based on the relevance score (RS) derived from LRP. The interpretation obtained from XML was evaluated comprehensively from the statistical perspective based on Statistical Parametric Mapping (SPM) and Effect Size. The RS has excellent statistical characteristics in the interpretation of landing patterns between classes, and also conforms to the clinical characteristics of landing pattern recognition. The current work highlights the applicability of XML methods that can not only satisfy the traditional decision problem between classes, but also largely solve the lack of transparency in landing pattern recognition. We provide a feasible framework for realizing interpretability of ML decision results in landing analysis, providing a methodological reference and solid foundation for future clinical diagnosis and biomechanical analysis

    New insights for the design of bionic robots:adaptive motion adjustment strategies during feline landings

    Get PDF
    Felines have significant advantages in terms of sports energy efficiency and flexibility compared with other animals, especially in terms of jumping and landing. The biomechanical characteristics of a feline (cat) landing from different heights can provide new insights into bionic robot design based on research results and the needs of bionic engineering. The purpose of this work was to investigate the adaptive motion adjustment strategy of the cat landing using a machine learning algorithm and finite element analysis (FEA). In a bionic robot, there are considerations in the design of the mechanical legs. (1) The coordination mechanism of each joint should be adjusted intelligently according to the force at the bottom of each mechanical leg. Specifically, with the increase in force at the bottom of the mechanical leg, the main joint bearing the impact load gradually shifts from the distal joint to the proximal joint; (2) the hardness of the materials located around the center of each joint of the bionic mechanical leg should be strengthened to increase service life; (3) the center of gravity of the robot should be lowered and the robot posture should be kept forward as far as possible to reduce machine wear and improve robot operational accuracy

    Safe RLHF: Safe Reinforcement Learning from Human Feedback

    Full text link
    With the development of large language models (LLMs), striking a balance between the performance and safety of AI systems has never been more critical. However, the inherent tension between the objectives of helpfulness and harmlessness presents a significant challenge during LLM training. To address this issue, we propose Safe Reinforcement Learning from Human Feedback (Safe RLHF), a novel algorithm for human value alignment. Safe RLHF explicitly decouples human preferences regarding helpfulness and harmlessness, effectively avoiding the crowdworkers' confusion about the tension and allowing us to train separate reward and cost models. We formalize the safety concern of LLMs as an optimization task of maximizing the reward function while satisfying specified cost constraints. Leveraging the Lagrangian method to solve this constrained problem, Safe RLHF dynamically adjusts the balance between the two objectives during fine-tuning. Through a three-round fine-tuning using Safe RLHF, we demonstrate a superior ability to mitigate harmful responses while enhancing model performance compared to existing value-aligned algorithms. Experimentally, we fine-tuned the Alpaca-7B using Safe RLHF and aligned it with collected human preferences, significantly improving its helpfulness and harmlessness according to human evaluations

    MIR2: Towards Provably Robust Multi-Agent Reinforcement Learning by Mutual Information Regularization

    Full text link
    Robust multi-agent reinforcement learning (MARL) necessitates resilience to uncertain or worst-case actions by unknown allies. Existing max-min optimization techniques in robust MARL seek to enhance resilience by training agents against worst-case adversaries, but this becomes intractable as the number of agents grows, leading to exponentially increasing worst-case scenarios. Attempts to simplify this complexity often yield overly pessimistic policies, inadequate robustness across scenarios and high computational demands. Unlike these approaches, humans naturally learn adaptive and resilient behaviors without the necessity of preparing for every conceivable worst-case scenario. Motivated by this, we propose MIR2, which trains policy in routine scenarios and minimize Mutual Information as Robust Regularization. Theoretically, we frame robustness as an inference problem and prove that minimizing mutual information between histories and actions implicitly maximizes a lower bound on robustness under certain assumptions. Further analysis reveals that our proposed approach prevents agents from overreacting to others through an information bottleneck and aligns the policy with a robust action prior. Empirically, our MIR2 displays even greater resilience against worst-case adversaries than max-min optimization in StarCraft II, Multi-agent Mujoco and rendezvous. Our superiority is consistent when deployed in challenging real-world robot swarm control scenario. See code and demo videos in Supplementary Materials
    • …
    corecore