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Explaining the differences 
of gait patterns between high 
and low‑mileage runners 
with machine learning
Datao Xu1, Wenjing Quan1,2,3, Huiyu Zhou1,4, Dong Sun1, Julien S. Baker5* & Yaodong Gu1*

Running gait patterns have implications for revealing the causes of injuries between higher-mileage 
runners and low-mileage runners. However, there is limited research on the possible relationships 
between running gait patterns and weekly running mileages. In recent years, machine learning 
algorithms have been used for pattern recognition and classification of gait features to emphasize 
the uniqueness of gait patterns. However, they all have a representative problem of being a black box 
that often lacks the interpretability of the predicted results of the classifier. Therefore, this study was 
conducted using a Deep Neural Network (DNN) model and Layer-wise Relevance Propagation (LRP) 
technology to investigate the differences in running gait patterns between higher-mileage runners 
and low-mileage runners. It was found that the ankle and knee provide considerable information 
to recognize gait features, especially in the sagittal and transverse planes. This may be the reason 
why high-mileage and low-mileage runners have different injury patterns due to their different gait 
patterns. The early stages of stance are very important in gait pattern recognition because the pattern 
contains effective information related to gait. The findings of the study noted that LRP completes a 
feasible interpretation of the predicted results of the model, thus providing more interesting insights 
and more effective information for analyzing gait patterns.

With an increase of the number of recreational runners, the injuries caused by overuse running are increasing1,2. 
The etiology of excessive use of running injuries is multifactorial, which may result from the interaction of many 
factors of external uncertainties (e.g., weekly running days, weekly running mileages, running environment, 
footwear) and internal risk (e.g., biomechanics factors, foot strike pattern, anatomic factors, age, gender)3. The 
injury rate among recreational runners has been recorded as high as 29.4%, with overuse knee injuries (e.g., 
knee anterior pain and iliotibial band syndrome) being the most reported4. Previous studies have shown that 
weekly running mileage is a major risk factor related to running injuries1,5, and there are significant differences 
in injuries between higher-mileage runners (self-reported running more than 32 km per week) and low-mileage 
runners (self-reported running less than 25 km per week)6. The higher-mileage weekly runners show higher rates 
of hip and hamstring injuries7, while the low-mileage weekly runners show higher rates of knee injuries8. Gait 
patterns are an important factor in decoding gait characteristics, which is related to revealing motor injuries and 
gait recognition9,10. Therefore, running gait patterns have implications for understanding the causes of injuries 
between higher-mileage runners and low-mileage runners. However, there is limited research on the possible 
relationship between running gait patterns and weekly running mileages.

Biomechanical analysis of higher-mileage and low-mileage runners may be useful in order to better under-
stand the potential relationship between running mileage and specific types of injuries. However, current research 
on the biomechanical performance of running gait of high-mileage and low-mileage runners mainly focuses 
on kinematics. Boyer et al. used the principal component analysis found that there were recognizable differ-
ences in the kinematics of the sagittal and frontal planes of the ankle, the frontal plane of the knee, the frontal 
and transverse plane of the hip in the stance phase between high-mileage and low-mileage runners11. Clermont 
et al. then combined the methods of principal component analysis with support vector machines with kinematic 
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data to classify runners based on mileage, and found that the classification performance of gait kinematics of 
high-mileage and low-mileage runners had high accuracy, which means there was high identifiability in the 
gait kinematics between high-mileage and low-mileage runners12. However, the kinetics (joint moments) of 
biomechanical parameters also play an important role in identifying damage patterns, especially in revealing 
the stresses on the major joints13,14. Therefore, both kinematics and kinetics should be considered to improve 
the recognition of gait patterns and reveal the pattern characteristics in a more detailed way when recognizing 
the running gait patterns of high-mileage and low-mileage runners.

When analyzing variables related to gait patterns, the previous method mainly examines the influence of 
single-time discrete gait variables. Previous methods have successfully addressed many important clinical and 
scientific questions related to human gait, but there are some inherent limitations. For example, when discrete 
variables are extracted from time-series variables, a large amount of data is lost 10. In addition, a single pre-
selected gait variable may miss potentially meaningful information represented by other unselected variables 
and correlated variables. Therefore, given the shortcomings of traditional methods, machine learning techniques 
(such as hierarchical clustering analysis, support vector machines, artificial neural networks, etc.) and multivari-
able statistical analysis have been used to examine and analyze human motion based on time-series gait patterns 
in recent years9,12,15–17. The progressive development of advanced motion capture equipment makes it possible 
to collect a large amount of clinical biomechanics data, which results in the increasing application of machine 
learning in clinical biomechanics16,18,19. For example, artificial neural networks and support vector machines are 
used for pattern recognition and classification of gait features to emphasize the uniqueness of gait patterns9,10,12.

Machine learning approaches can be very successful in solving many clinical biomechanical problems related 
to classification systems and providing new insights from complex model systems. However, they all have the 
same problem of being a black box that doesn’t provide any information about what makes the decisions20,21. 
In other words, these models often lack the interpretability of the predicted results of the classifier22. The main 
reason for this lack of interpretability is the nonlinearity of various mappings that process the original data set 
(such as gait patterns) to their characteristic representation and then to the classifier function. In gait pattern 
recognition, this prevents experts in the relevant fields from carefully verifying classification decisions, because 
simple answers of "yes" or "no" sometimes have little or limited value. Therefore, Layer-wise Relevance Propaga-
tion (LRP) technology is proposed to solve the problem of lack of interpretability22. LRP is a technology used to 
identify important relevance (that is, by measuring the contribution of each input variable to the overall predict 
outcomes) through backward propagation in neural networks22,23. LRP has been successfully applied to classifica-
tion recognition tasks in many scenarios, such as text, image, and even gait pattern recognition9,10,24. Therefore, 
the application of LPR in running gait pattern recognition can improve the overall transparency of the classifier 
and make the classification results interpretable, thus providing reliable clinical biomechanical diagnostic results.

Therefore, the purpose of this study was to investigate the differences in running gait patterns between 
higher-mileage runners and low-mileage runners. Specifically, the aim of this study was: (1) To train a deep 
neural network (DNN) model by using the kinematics and kinetics data of runners with different weekly running 
mileages as input variables to classify and recognize the gait characteristics of runners with higher-mileage and 
low-mileage runners. (2) To evaluate the classifier performance of DNN classification models based on different 
input variables (separate kinematic inputs; separate kinetic inputs; kinematic and kinetic inputs together). (3) To 
identify the relevance of relevant variables and time points between higher-mileage and low-mileage runners by 
using LRP technology. (4) To explore LRP as a method for data reduction and explain the classification decision 
of the DNN classifier model based on the high relevant variables.

Results
Performance of deep neural network classification models.  For the matrices M , 75 TP, 5 FN, 77 
TN and 3 FP were obtained by DNN classifier. For the matrices Mkinematics , 75 TP, 5 FN, 69 TN and 11 FP were 
obtained by DNN classifier. For the matrices Mkinetics , 70 TP, 10 FN, 77 TN and 3 FP were obtained by DNN 
classifier. All classification performance parameters are presented in Fig. 1. For the classifier of the DNN models 
based on the matrices M (Fig. 1A), the model showed the higher accuracy rate (accuracy rate: 95%) than the 
matrices Mkinematics (accuracy rate: 90.00%) and matrices Mkinetics (accuracy rate: 91.88%). In general, the clas-
sifier of the DNN models based on the matrices M presented a perfect accuracy rate, specificity rate, as well as 
precision rate compared to separate matrices Mkinematics and Mkinetics . At the same time, the classifier of the DNN 
models based on the matrices M showed the higher F1 − score (0.9494) and MCC (0.9003) than the matrices 
Mkinematics and matrices Mkinetics (Fig. 1C). Overall, the classifier performance based on the matrices M achieved 
an F1 − score and MCC score of very strong relationships.

The ROC curves are showed in Fig. 1, the ROC curves of the classifier of the DNN models based on the 
matrices M (Fig. 1A) presented a good classification performance during the overall area. However, the ROC 
curves based on the matrices Mkinematics (Fig. 1B) show the worse classification performance during the about 
(0FPR−0.1FPR) ∗ (0.4FPR−1FPR) area, and the matrices Mkinetics (Fig. 1C) show the worse classification perfor-
mance during the about (0FPR−0.7FPR) ∗ (0.9FPR−1FPR) area. The classifier of the DNN models based on the 
matrices M show the higher AUC (0.9427) than the matrices Mkinematics (AUC: 0.8981) and matrices Mkinetics 
(AUC: 0.9097). Overall, the classifier of the DNN models based on the matrices M has a good performance from 
the perspective of overall indicators.

Results of LPR.  The relative contribution of variables during the overall stance phase are showed in Fig. 2A, 
the variables recorded at every 1% of the stance interval are related to successfully matching the stride pat-
tern between the higher-mileage runners and lower-mileage runners. The contribution of variables during the 
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1%-47% stance phase (contribution: 52.54%) was higher than the contribution of variables during the 48%-100% 
stance phase (contribution: 47.46%) to the successful classification.

The summed contribution of the relevance score of each joint (ankle, knee, hip) of each plane (sagittal, 
frontal, transverse) of kinematics (joint angle) and kinetics (joint moment) trajectories are showed in Fig. 2C. 
The summed contribution rate of the relevance score of the ankle, knee, hip was 43.16%, 35.98%, 20.86%, 
respectively. The summed contribution rate of the relevance score of the sagittal, frontal, transverse was 39.90%, 
32.24%, 27.86%, respectively. The most relevant trajectory variables were the ankle dorsiflexion-plantarflexion 
angle (9.69%), the knee internal–external rotation angle (9.59%), the ankle dorsiflexion-plantarflexion moment 
(9.37%), and the knee flexion–extension moment (9.39%). Secondly, the relevant trajectory variables were the 
knee flexion–extension angle (7.19%), the hip abduction–adduction angle (8.64%), and the ankle inversion-
eversion moment (7.93%). However, there was little relevance score in the variables of knee abduction–adduc-
tion angle (1.93%), hip flexion–extension angle (1.90%), hip internal–external rotation angle (1.85%), ankle 
internal–external rotation moment (2.99%), knee abduction–adduction moment (1.70%), hip flexion–extension 
moment (2.36%), hip internal–external rotation moment (1.18%).

The detailed distribution of relevance score during each joint (ankle, knee, hip) of each plane (sagittal, frontal, 
transverse) of kinematics (joint angle) and kinetics (joint moment) are showed in Fig. 2B. There were revealing 

Figure 1.   The classifier of the DNN models based on the matrices M , Mkinematics , Mkinetics . (A) The classifier 
of the DNN models based on the matrices M . (B) The classifier of the DNN models based on the matrices 
Mkinematics . (C) The classifier of the DNN models based on the matrices Mkinetics . ROC: Receiver Operating 
Characteristic; AUC: Area Under the ROC Curve; MCC: Matthews Correlation Coefficient; TPR: True Positive 
Rate; FPR: False Positive Rate.



4

Vol:.(1234567890)

Scientific Reports |         (2022) 12:2981  | https://doi.org/10.1038/s41598-022-07054-1

www.nature.com/scientificreports/

findings contributing to distribution of the variables on time points between the higher-mileage runners and 
lower-mileage runners during the overground running movement patterns.

Notable highly relevant variables (the top 200 variables with the highest correlation relevance, all of them 
had a relevance score of over 0.7) during the stance are showed in Fig. 3. For the kinematics of the ankle, there 
was high relevance score in dorsiflexion-plantarflexion angle during the 1%–18%, 47%–51%, 88%–95% stance 
phase; in inversion-eversion angle during the 69%–72%, 98%–99% stance phase; in internal–external rotation 

Figure 2.   The LPR results in the average absolute relevance score of every variable in a stride pattern. (A) The 
relative contribution of variables during the overall stance phase (0%–100%). (B) The detailed distribution of 
relevance score during each joint (ankle, knee, hip) of each plane (sagittal, frontal, transverse) of kinematics 
(joint angle) and kinetics (joint moment). The darker colors mean high relevance variables, the lighter colors 
mean low relevance variables. The model relied more on darker color variables; the lighter colors variables had 
less relevance with correctly classified gait patterns. (C) The summed contribution of the relevance score of each 
joint (ankle, knee, hip) of each plane (sagittal, frontal, transverse) of kinematics (joint angle) and kinetics (joint 
moment) trajectories.

Figure 3.   Notable highly relevant variable during each joint (ankle, knee, hip) of each plane (sagittal, frontal, 
transverse) of kinematics (joint angle) and kinetics (joint moment). The top 200 variables with the highest 
correlation relevance, all of them had a relevance score of over 0.7.
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angle during the 19%–34% stance phase. For the kinematics of the knee, there was high relevance score in 
flexion–extension angle during the 3%-21% stance phase; in internal–external rotation angle during the 6%, 
11%–34%, 37%–41%, 81%–88% stance phase. For the kinematics of the hip, there was high relevance score in 
abduction–adduction angle during the 10%–14%, 68%, 77%–83% stance phase.

For the kinetics of the ankle, there was high relevance score in the dorsiflexion-plantarflexion moment during 
the 2%–4%, 9%–11%, 13%–21%, 28%–34%, 95%–97% stance phase; in the inversion-eversion moment during 
the 32%–35% stance phase. For the kinetics of the knee, there was high relevance score in the flexion–extension 
moment during the 3%–11%, 14%–33%, 69%–70% stance phase; in internal–external rotation moment during 
the 26%–34% stance phase. For the kinetics of the hip, there was high relevance score in the abduction–adduc-
tion moment during the 37%–44% stance phase.

Discussion
This study aimed to investigate the differences in running gait patterns between higher-mileage runners and low-
mileage runners. The objectives were to firstly train the DNN model by using the running gait kinematics (joint 
angle) and kinetics (joint moment) dataset as input variables to classify and recognize the gait characteristics 
of runners with higher-mileage and low-mileage runners. Secondly, to evaluate the classifier performance of 
DNN classification models based on different input variables (separate kinematic inputs; separate kinetic inputs; 
kinematic and kinetic inputs together). Finally, to use LRP to identify the relevance of relevant variables and 
time points between higher-mileage and low-mileage runners, and explain the classification decision of DNN 
classifier model based on those high relevant variables.

According to our research results, higher-mileage and low-mileage runners have discernable differences in 
gait characteristics, independently in relation to the perspective of kinematics or kinetics variables. When the 
classifier of the DNN models is only based on the kinematics as the input variables, the model shows good clas-
sification performance (Fig. 1A: accuracy rate is 90.00%). This supports previous findings of Clermont et al., who 
successfully classified higher- and low-mileage runners with 92.59% accuracy, showing that there are discernible 
differences in running gait kinematics between higher-mileage and low-mileage runners12. At the same time, 
when the classifier of the DNN models is only based on the kinetics as the input variables, the model accuracy 
rate is 91.88%, but when combining kinematics and kinetics as input variables, the model accuracy rate reaches 
95%. In our study, the F1−score and MCC were used to evaluate the performance of the classifier, which can 
provide a good evaluation of the performance of the classifier34,35. In our results, the classifier of combining 
kinematics and kinetics as input variables obtained a higher F1−score (0.9494) and MCC (0.9003), as well as a 
higher AUC (0.9427). These results show that running gait kinetics data can increase the pattern recognition 
rate of gait characteristics between higher-mileage and low-mileage runners, at least in terms of classifier model 
performance. Therefore, the relevant research should consider the combination of kinematics and kinetics data 
sets rather than only simply kinematics when analyzing gait characteristics, if it is possible. It can provide more 
effective gait pattern information for the field of medical biomechanics. Of course, compared to only collecting 
kinematics data, both collecting kinematics and kinetics increase the difficulty of collection, especially in the 
absence of relevant equipment.

In the research of gait pattern recognition, it is often necessary to record a large amount of data in order 
to better recognize gait patterns36, which makes it difficult to complete an accurate interpretation of gait pat-
tern recognition results with few variables as possible. In this study, the variables were imported into the DNN 
model for training, and then the relevance score of each variable’s contribution to the gait pattern recognition 
results was obtained through LRP. The results of gait pattern recognition can be accurately interpreted by using 
highly correlated variables, which undoubtedly provides more important and effective information for gait pat-
tern recognition. As shown in Fig. 2, not all variables contribute significantly to identifying the gait patterns of 
higher-mileage and low-mileage runners. The contribution of variables during the 1%–47% stance phase was 
higher than the contribution of variables during the 48%–100% stance phase to the successful recognize gait 
pattern (as shown in Fig. 2A). In other words, the early stage of the stance phase covers the interpretability of 
higher-mileage and low-mileage runners in gait pattern recognition. Horst et al. found that the most significant 
individual gait characteristics appeared in the early stage of the stance phase when they analyzed individual gait 
patterns in barefoot walking using LRP10. At the same time, Hoitz et al. found that the early stage of stance phase 
(1%–30%) has a more significant contribution to gait pattern recognition than the late stage of the stance phase9. 
The differences in foot strike patterns (from rearfoot strikes to forefoot strikes) are more readily observed in the 
early stages of stance37. These results seem to suggest that the early stages of stance may play a more important 
and meaningful role in identifying gait patterns. It also provides insights for other researchers who should focus 
on the early stages of stance when investigating gait patterns, at least for now the evidence suggests that early 
stages of stance contain more meaningful information about gait patterns.

In addition to showing a more significant contribution during the early stages of stance, the summed contribu-
tion of the relevance score of each joint of each plane of kinematics and kinetics trajectories are also inconsistent. 
As shown in Fig. 2C, our results show that the most relevant trajectory variables were the ankle dorsiflexion-
plantarflexion angle, the knee internal–external rotation angle, the ankle dorsiflexion-plantarflexion moment, 
and the knee flexion–extension moment. The sagittal plane of the ankle and knee plays an important role in 
recognition gait patterns between high-milage and low-milage runners, which also confirms previous findings 
that the sagittal plane should be considered11. The hip appears to play a small role in identifying the gait patterns 
of higher-mileage and low-mileage runners, no matter from the perspective of kinematics or kinetics. However, 
when the top 200 variables with the highest correlation relevance score (as shown in Fig. 3, all of them had a 
relevance score of over 0.7) were extracted9, the high relevance score was shown in the abduction–adduction 
angle (moment) during the 10%–14%, 68%, 77%–83% (37%–44%) stance phase. Previous studies have shown 
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that high-mileage runners exhibit larger hip adduction and have a higher risk of hip injury compared to low-
mileage runners7,11. Therefore, it is permissible to use the gait characteristic of the hip frontal plane to identify 
gait patterns in higher-mileage and low-mileage runners, which can provide more information about injuries and 
individual characteristics. At the same time, the ankle and knee provide considerable information to recognize 
gait features, especially in the sagittal and transverse planes. It also suggests that runners adjust their gait pat-
terns during the running gait stance phase, leading to more flexion of the knee and more valgus of the foot12,38. 
Therefore, the high-mileage runners show higher rates of hip and hamstring injuries and low-mileage runners 
show higher rates of knee injuries may be due to their different gait patterns.

In general, LRP completes a feasible interpretation of the predicted results of the model, thus providing more 
interesting insights and more effective information for analyzing gait patterns. The relevance score results of LRP 
output enable machine learning algorithms (such as artificial neural networks) to predict and analyze multiple 
variables of the gait cycle from different time points. Compared with traditional gait analysis methods (based 
on a single pre-selected variable), machine learning algorithms in the field of medical biomechanics seem to 
be better able to correlate human movement with related injuries and diseases in multiple dimensions16,39. At 
the same time, the explainable relevance score results of gait pattern recognition show that the variables related 
to a particular gait pattern recognition are not confined to a single gait feature, nor are they evenly distributed 
across all gait features. In summary, the results of LRP demonstrate its applicability to the understanding and 
interpretation of machine learning prediction results in clinical (biomechanical) gait analysis. In other words, 
the application of machine learning in gait analysis combined with LRP is well worth considering by research-
ers, which also provides some references for future clinical (biomechanical) analysis and diagnostic research.

The current study has some limitations. First of all, only male runners were included in this study, so the 
results of this study apply only to male runners. In the future, female runners can be combined to explore the 
differences in gait patterns among different mileage runners. Secondly, the current study used uniform runners’ 
running speeds (3.3 m/s ± 10%) to minimize the biomechanical differences due to different running speeds40. 
Because of the differences in training levels and running habits between high-mileage and low-mileage runners, 
there may be a small number of runners not showing the most realistic gait pattern. In general, however, the 
subjects were given enough time to familiarize themselves to the uniform speed prior to formal experimental 
data collection, which compensated for any possible errors outlined.

Conclusion
Considering the combination of kinematics and kinetics data sets rather than only simply kinematics when 
analyzing gait characteristics can increase the pattern recognition rate of gait characteristics between higher-
mileage and low-mileage runners, as well as providing more effective and efficient gait pattern information. The 
ankle and knee provide considerable information that can help recognize gait features, especially in the sagittal 
and transverse planes. This may be the reason why high-mileage and low-mileage runners have different injury 
patterns due to their different gait patterns. The early stages of the stance are also very important in the term 
of gait pattern recognition because it contains more effective information about gait patterns. LRP completes a 
feasible interpretation of the predicted results of the model, thus providing more interesting insights and more 
effective information for analyzing gait patterns. Thus, researchers should consider combining LRP when they 
apply machine learning in gait analysis.

Methods
Participants.  This study recruited 80 male healthy runners: 40 higher-mileage runners (age: 35.51 ± 10.32 
y, height: 172.30 ± 8.13  cm, body mass: 65.33 ± 7.46  kg, running experience: 8.56 ± 7.74, weekly mile-
age: 44.31 ± 13.67  km), 40 lower-mileage runners (age: 33.90 ± 9.74 y, height: 173.40 ± 6.96  cm, body mass: 
68.58 ± 8.20 kg, running experience: 4.71 ± 3.19, weekly mileage: 15.28 ± 5.30 km). The criteria for inclusion were 
no serious lower extremity musculoskeletal injury, no history of major lower extremity surgery, or any other 
injury factors that might interfere with the study in the previous 6 months. According to previous studies11,12, 
“lower-mileage” runners were defined as those who self-reported running less than 25  km per week, while 
“higher-mileage” runners were defined as those who ran more than 32 km per week. Participants were informed 
of the purpose, requirements, and procedures of the experiment. This study was performed in accordance with 
the Declaration of Helsinki, the study protocol was approved (Approval Number: RAGH20210326) by the Eth-
ics Committee of Ningbo University, and the written informed consent was provided and signed by all subjects.

Experimental protocol and procedures.  The experiment was conducted in the biomechanics labora-
tory at the Research Academy of Grand Health, Ningbo University. Three-dimensional lower limb joint kinemat-
ics data were collected at 200 Hz using a Vicon (Vicon Metrics Ltd., United Kingdom) motion capture system 
(eight Infrared cameras). In an identical time frame, the ground reaction force (GRF) data were synchronously 
collected using a 1000 Hz in-ground AMTI force plate (AMTI, Watertown, United States). Vicon motion capture 
system and AMTI force plate are connected through Vicon Nexus 1.8.6 software to achieve the synchronous 
collection. This study selected the right leg as the analytical limb, so the 12.5 mm diameter standard reflective 
marker was attached to the pelvis and right lower limb25: right anterior superior iliac spine, left anterior superior 
iliac spine, right posterior superior iliac spine, left posterior superior iliac spine, right medial condyle, right 
lateral condyle, right medial malleolus, right lateral malleolus, right first metatarsal head, right fifth metatarsal 
head, right distal interphalangeal joint of the second toe. At the same time, three tracking clusters were labeled 
on the right middle and lateral thigh, right middle and lateral shank, right heel. A stadiometer and a calibrated 
scale were used to measure the subject’s body mass and height respectively.
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All subjects were asked to wear leggings and tights and uniform standard running shoes (Anta Flashedge, 
China). All runners were heel strikers. Prior to the formal experiment, subjects warmed up by jogging for 10 min 
in the laboratory environment at a self-selected speed. Following warm up, they then familiarized themselves 
with the experiment process and conducted preliminary experimental data collection. The infrared timers were 
placed on either side of the 20-m track to measure the participants’ running speed (specific location: 4-m behind/
in front of the force plate). The subjects were asked to run naturally across the track at a speed of 3.3 ± 10% 
meters per second and land with their right foot on the force plate in a natural unconsciousness way26. The test 
was considered valid when the subject was observed and measured to run at the correct speed and in a natural 
manner. A total of 10 recordings of valid data were collected for each subject.

Data collection and processing
Based on the study of Xu et al.27, the initial contact force point was determined as the vertical GRF greater than 
10 N. The stance phase was defined as the force plate from the initial contact force point to the right lower limb 
leaving the force plate (force value to zero). The whole data set was preprocessed using Vicon Nexus 1.8.6 soft-
ware. Firstly, the data of the reflective marker trajectory coordinates and the GRF data are exported from Vicon 
Nexus into C3D format file, and then the C3D format file is imported into Visual 3-D software (version 6.7.3, 
C-Motion Inc., Germantown, United States) for modeling and further processing. According to Winter’s study 
in relation to the filter selected frequency, the most appropriate signal-to-noise ratio was selected by carrying 
out residual analysis of the data of subsets28. Finally, fourth-order zero-phase lag Butterworth low-pass filters 
were selected to filter the data (Filter frequency, kinematics data: 10 Hz, kinetic data: 20 Hz). The pelvis model 
was developed according to the CODA model, and the hip joint center location was defined by regression Eqs. 29. 
The right hip joint center (RHJC) according to Eq. (1) and left hip joint center (LHJC) according to Eq. (2) was 
identified by the anterior superior iliac spine (ASIS):

The center position of each segment was determined by the coordinates of the reflective markers, and then 
the joint angles of each segment were calculated. Finally, the joint kinetics (joint moment) was calculated by the 
inverse kinetics algorithm in Visual 3-D software. All joint kinematics and joint kinetics data were then imported 
into MATLAB R2019a (Visual R2019a, MathWorks, United States) to process further. For each joint (ankle, 
knee, hip) of each plane (sagittal, frontal, transverse) of kinematics (joint angle) and kinetics (joint moment) 
data, all were extracted to expand into 100 data point curves by custom MATLAB script. Finally, two matrices 
can be obtained:

Data analysis
Neural networks are widely parallel networks of adaptive simple units whose organization can simulate the 
interactions of biological nervous systems to real-world objects30. Neural networks with more than two hid-
den layers are defined as deep neural networks, and deep neural network (DNN) is generally considered to 
improve the accuracy of the whole model31. The application of the DNN model in this study was mainly biased 
to improve the accuracy of the model, so a DNN model with ten hidden layers was designed under the condition 
of repeated model training and adjustment according to the actual data. The matrices Mkinematics , Mkinetics , and 
M = Mkinematics +Mkinetics was conducted using Layer-wise Relevance Propagation (LRP) respectively. Firstly, 
a deep neural network (DNN) was established that included one input layer, ten hidden layers, and one output 
layers, and the per layer nodes were determined by the input data shape32. Therefore, for the dataset Mkinematics 
and Mkinetics , the nodes of the input layer, hidden layers, and output layer were 900, 1800, and 2. For the dataset 
M , the nodes of the input layer, hidden layers, and output layer were 1800, 3600, and 2. As shown in Fig. 4A, the 
layers of the neural network are fully connected, which means the neuron of the n-th layers must be connected 
to the neuron of the (n+ 1) -t h layer. A linear relation function and an activation function were used to calculate 
the new values between layers, and the linear relationship function of the model constructed in this study was

The wi is the connection weight of the i-th neuron, and the xi is the input from the i-th neuron. The hidden 
layer activation function was used the hyperbolic tangent function

The batch size was set 25, and the epoch limit was set 3000. At the same time, the data of the higher-mileage 
runner was set at positive class, and the data of the lower-mileage runner was set to negative class. Before the 

(1)RHJC = (0.36 ∗ ASISDistance ,−0.19 ∗ ASISDistance ,−0.3 ∗ ASIS_Distance)

(2)LHJC = (−0.36 ∗ ASISDistance ,−0.19 ∗ ASISDistance ,−0.3 ∗ ASIS_Distance)

Mkinematics = 800
(

80 subjects ∗ 10 trials
)

∗ 900
(

3 joint ∗ 3 plane ∗ 100 data points
)

Mkinetics = 800
(

80 subjects ∗ 10 trials
)

∗ 900
(

3 joint ∗ 3plane ∗ 100 data points
)

(3)z =
m
∑

i=1

wixi + b

(4)gx =
ex − e−x

ex + e−x
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data training, the 10 data sets of successful trials for each subject were taken as a whole, and then randomly 
extracted the data sets of 32 higher-mileage and 32 lower-mileage runners as training sets (a total of 640 sample 
data sets), the remaining data sets of 8 higher-mileage and 8 lower-mileage runners as test sets (a total of 160 
sample data sets). Following DNN training, the relevance score was calculated by the LRP, and the performance 
of the classifier was evaluated by the accuracy achieved and other parameters.

Layer‑wise relevance propagation.  Layer-wise Relevance Propagation (LRP) is technology used to 
identify important relevance through backward propagation in neural networks. Backward propagation is a 
conservative relevance redistribution process in which the neurons that contribute the most to the upper layer 
receive the most relevance from the upper layer. In general, LRP aims to narrow the gap between the classifica-
tion and interpretability of multi-layer neural networks on nonlinear cores22,23.

The overall idea is to understand the contribution of a single feature of dataset x to the prediction f (x) made 
by the classifier f  in pattern recognition and classification tasks. That is, the positive or negative contribution of 
each feature to the classification result for dataset x can be calculated, and the degree of such contribution can 
be accurately measured to a certain extent (The contribution of each input feature x(d) to a particular predic-
tion f (x) . In the setting of the classifier is a mapping f  : Rv → R1 , f (x) > 0 indicates the existence of a learning 
structure. The constraint of classification is to find the differential contribution relative to the most uncertain 
state of the classification, which is then represented by the root point f (x0) = 0 . By factoring the prediction f (x) 
into the sum of the individual input feature x(d):

In the classifier, whether for nonlinear support vector machines or neural networks, the first layer is the input 
features, and the last layer is the predicted output of the classifier. Meanwhile, each layer is part of the features 
extracted from the dataset x after running the classification algorithm. The l-th layer is modeled as a vector 
z =

(

zld
)V(l)

d=1
 with dimensionality V(l) . LRP has a relevance score R(l+1)

d  for each dimension z(l+1)
d  of vector z 

(5)f (x) =
V
∑

d=1

Rd

Figure 4.   (A) A description of the neurons and weight connections of the DNN by the interpretation of the 
different variables and indices from multilayers. Left is the process of establishing f (x) by forward pass of DNN. 
Right is the process of calculating relevance score R(1)

d  by LRP back pass. On the upper right side is the algorithm 
summary about the complete LRP procedure for DNN. (B) A description of the confusion matrix of binary 
classifier.
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at layer l + 1 . A relevance score R(l)
d  is found in each dimension zld of vector z near the next layer l  of the input 

layer, as shown in the following formula:

The inter-hierarchical relevance is represented by the message Rl,l+1
i←j  between neuron i and j , and these mes-

sages can be sent along with each connection. As shown in Fig. 4A, the output f (x) is then passed from one 
neuron to the next by backward propagation. The relevance of neurons is defined as the sum of incoming mes-
sages, then the sum runs over the sinks at layer l + 1 for a fixed neuron i at a layer l .

The Input of the next neuron in the direction defined during classification, then the sum runs over the sources 
at layer l  for a fixed neuron k at layer l + 1 . In general, this can be expressed as:

The relevance of each layer is calculated by backward propagation: the relevance R(l)
i  is expressed as a func-

tion of the upper relevance R(l+1)
j  , and back propagates the relevance until the input feature is reached. As 

shown in Fig. 4A, through the relevance of the neuron R(l+1)
j  to the classification decision f (x) , the relevance is 

then decomposed according to the message Ri←j sent to the upper layer of neurons. Holding the conservation 
property:

For the linear network f (x) =
∑

i
zij , the relevance is Rj = f (x) , and the decomposition directly by Ri←j = zij . 

Through hyperbolic tangent function and rectification function two monotone increasing functions, the pre-
activation function zij provides a reasonable way to measure the relative contribution of xi to Rj for each neuron. 
Based on the proportion of local pre-activation and global pre-activation, the selection of association decomposi-
tion is obtained:

The relevance Ri←j are shown in:

Multiplier accounts represent the relevance absorbed by the bias term, and the residual bias correlations can 
be reassigned to each neuron xi . According to the determined rule (Eq. 10), through adding up the correlations 
of all neurons in the upper layer i (combined Eqs. (7) and (8)), the overall relevance of all neurons in the next 
layer j can be obtained:

The relevance propagates from one layer to another until it reaches the input feature x(d) , where the relevance 
R
(1)
d  provides the hierarchical eigen-decomposition required for the decision f (x) . The upper right side of Fig. 4A 

summarized the algorithm of the complete LRP procedure for DNN. More details can be found by referring to 
Lapuschkin et al22. All algorithms were run in MATLAB R2019a (Natick, Massachusetts: The MathWorks Inc.), 
through self-written scripts according to the layer-wise relevance propagation toolbox33.

The relevance of correctly classified gait patterns was extracted by defining logical variables, and then a rel-
evance score was assigned to each input variable. LRP determines the correlation between each variable and the 
predicted results of the model, and normalizes the LRP-derived association patterns to their respective maximum 
values for comparison. After then, the average of all relevant patterns was determined and the error was rectified. 
The rectified average was smoothed, whereby the present point was weighted with 50%, and the previous and 
following points were weighted with 25%. For the smoothing process, the weighted values were set such that 
their total equaled 1 and a repetition of the procedure would approximate a Gaussian filter. Each of these steps 
was performed three times to get the desired result. Finally, the smoothed correlation pattern was rescaled from 
0 (no correlation) to 1 (the highest correlation)9. Since the input variables are collected in the time domain, and 
the adjacent values are interdependent, the fluctuation of the relevance score can be reduced by smoothing. 
To explore the influence of different variables on the accuracy of model classification, all variables were sorted 
according to the correlation between variables, and then the top 200 variables with the highest relevance scores 
were selected to explain and analyze the gait pattern.

(6)f (x) = · · · =
∑

d∈l+1

Rl+1
d =

∑

d∈l

Rl
d = · · · =

∑

d

R1
d

(7)R
(l)
j =

∑

k:i is input for neuron k

R
(l,l+1)
i←k (7)

(8)R
(l+1)
k =

∑

i:i is input for neuron k

R
(l,l+1)
i←k

(9)
∑

i

R
(l,l+1)
i←j = R

(l+1)
j

(10)Rl,l+1
i←j =

zij

zj
∗ Rl+1

j

(11)
∑

i

R
(l,l+1)
i←j = R

(l+1)
j ∗

(

1−
bj

zj

)

(12)R
(l)
i =

∑

j

R
(l,l+1)
i←j
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Evaluate the performance of the classifier.  Combine the results of the classification model into a 2 ∗ 2 

table called confusion matrix m =
(

TP FN
FP TN

)

 (more details are shown in Fig. 4B) which fully describes the 

results of the classification task34. Then, the following indicators were calculated to evaluate the performance of 
the classifier.

1.	 The accuracy of a classifier on a given set of tests is the percentage of tuples that are correctly classified by 
the classifier:

2.	 The sensitivity (also called recall) is the true positive cases recognition rate, which means the percentage of 
positive tuples correctly identified:

3.	 The specificity is the true positive cases recognition rate, which means the percentage of negative tuples 
correctly identified:

4.	 The precision is a measure of accuracy, which means the percentage of tuples marked as positive that are 
actually positive:

5.	 F1 − score is the harmonic average of accuracy and recall rate, which means the recall rate is weighted once 
as much as the precision:

6.	 Receiver Operating Characteristic (ROC) curves is a useful visual tool for comparing classifier models, which 
can provide objective and neutral advice regardless of cost/benefit when making decisions. The ROC curve 
shows the tradeoff between the true positive rate (TPR) and the false positive rate (FPR) for the classifier 
model. The increase in TPR comes at the expense of the increase in FPR:

	   The Y-axis of the ROC curve represents TPR and the X-axis represents FPR, and the area under the ROC 
curve ( AUC ) is a measure of model accuracy:

7.	 Matthew’s correlation coefficient (MCC) is a contingency matrix method34. MCC can be used to calculate 
the Pearson product-moment correlation coefficient 35 between the actual value and the predicted value:
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