33,765 research outputs found
The rare decay B --> X_s l^+ l^- to NNLL precision for arbitrary dilepton invariant mass
We present a new phenomenological analysis of the inclusive rare decay . In particular, we present the first calculation of the NNLL
contributions due to the leading two-loop matrix elements, evaluated for
arbitrary dilepton invariant mass. This allows to obtain the first NNLL
estimates of the dilepton mass spectrum and the lepton forward-backward
asymmetry in the high region, and to provide an
independent check of previously published results in the low region. The numerical impact of these NNLL corrections in the
high-mass region () amounts to -13% in the
integrated rate, and leads to a reduction of the scale uncertainty to .
The impact of non-perturbative contributions in this region is also discussed
in detail.Comment: 40 pages, 12 figures. v2: extended phenomenological discussion;
results unchanged; published versio
A model of rotating hotspots for 3:2 frequency ratio of HFQPOs in black hole X-ray binaries
We propose a model to explain a puzzling 3:2 frequency ratio of high
frequency quasi-periodic oscillations (HFQPOs) in black hole (BH) X-ray
binaries, GRO J1655-40, GRS 1915+105 and XTE J1550-564. In our model a
non-axisymmetric magnetic coupling (MC) of a rotating black hole (BH) with its
surrounding accretion disc coexists with the Blandford-Znajek (BZ) process. The
upper frequency is fitted by a rotating hotspot near the inner edge of the
disc, which is produced by the energy transferred from the BH to the disc, and
the lower frequency is fitted by another rotating hotspot somewhere away from
the inner edge of the disc, which arises from the screw instability of the
magnetic field on the disc. It turns out that the 3:2 frequency ratio of HFQPOs
in these X-ray binaries could be well fitted to the observational data with a
much narrower range of the BH spin. In addition, the spectral properties of
HFQPOs are discussed. The correlation of HFQPOs with jets from microquasars is
contained naturally in our model.Comment: 8 pages, 4 figures. accepted by MNRA
Neutrino emission from a GRB afterglow shock during an inner supernova shock breakout
The observations of a nearby low-luminosity gamma-ray burst (GRB) 060218
associated with supernova SN 2006aj may imply an interesting astronomical
picture where a supernova shock breakout locates behind a relativistic GRB jet.
Based on this picture, we study neutrino emission for early afterglows of GRB
060218-like GRBs, where neutrinos are expected to be produced from photopion
interactions in a GRB blast wave that propagates into a dense wind.
Relativistic protons for the interactions are accelerated by an external shock,
while target photons are basically provided by the incoming thermal emission
from the shock breakout and its inverse-Compton scattered component. Because of
a high estimated event rate of low-luminosity GRBs, we would have more
opportunities to detect afterglow neutrinos from a single nearby GRB event of
this type by IceCube. Such a possible detection could provide evidence for the
picture described above.Comment: 6 pages, 2 figures, accepted for publication in MNRA
Dynamic Pattern of Finite-Pulsed Beams inside One-dimensional Photonic Band Gap Materials
The dynamics of two-dimensional electromagnetic (EM) pulses through
one-dimensional photonic crystals (1DPC) has been theoretically studied.
Employing the time expectation integral over the Poynting vector as the arrival
time [Phys. Rev. Lett. 84, 2370, (2000)], we show that the superluminal
tunneling process of EM pulses is the propagation of the net forward-going
Poynting vector through the 1DPC, and the Hartman effect is due to the
saturation effect of the arrival time (smaller and smaller time accumulated) of
the net forward energy flow caused by the interference effect of the forward
and the backward field (from the interfaces of each layer) happened in the
region before the 1DPC and in the front part of the 1DPC.Comment: 18 pages, 4 figure
The effect of Mach number on unstable disturbances in shock/boundary-layer interactions
The effect of Mach number on the growth of unstable disturbances in a boundary layer undergoing a strong interaction with an impinging oblique shock wave is studied by direct numerical simulation and linear stability theory (LST). To reduce the number of independent parameters, test cases are arranged so that both the interaction location Reynolds number (based on the distance from the plate leading edge to the shock impingement location for a corresponding inviscid flow) and the separation bubble length Reynolds number are held fixed. Small-amplitude disturbances are introduced via both white-noise and harmonic forcing and, after verification that the disturbances are convective in nature, linear growth rates are extracted from the simulations for comparison with parallel flow LST and solutions of the parabolized stability equations (PSE). At Mach 2.0, the oblique modes are dominant and consistent results are obtained from simulation and theory. At Mach 4.5 and Mach 6.85, the linear Navier-Stokes results show large reductions in disturbance energy at the point where the shock impinges on the top of the separated shear layer. The most unstable second mode has only weak growth over the bubble region, which instead shows significant growth of streamwise structures. The two higher Mach number cases are not well predicted by parallel flow LST, which gives frequencies and spanwise wave numbers that are significantly different from the simulations. The PSE approach leads to good qualitative predictions of the dominant frequency and wavenumber at Mach 2.0 and 4.5, but suffers from reduced accuracy in the region immediately after the shock impingement. Three-dimensional Navier-Stokes simulations are used to demonstrate that at finite amplitudes the flow structures undergo a nonlinear breakdown to turbulence. This breakdown is enhanced when the oblique-mode disturbances are supplemented with unstable Mack modes
A comparative study of the electronic and magnetic properties of BaFe_2As_2 and BaMn_2As_2 using the Gutzwiller approximation
To elucidate the role played by the transition metal ion in the pnictide
materials, we compare the electronic and magnetic properties of BaFe_{2}As_{2}
with BaMn_{2}As_{2}. To this end we employ the LDA+Gutzwiller method to analyze
the mass renormalizations and the size of the ordered magnetic moment of the
two systems. We study a model that contains all five transition metal 3d
orbitals together with the Ba-5d and As-4p states (ddp-model) and compare these
results with a downfolded model that consists of Fe/Mn d-states only (d-model).
Electronic correlations are treated using the multiband Gutzwiller
approximation. The paramagnetic phase has also been investigated using
LDA+Gutzwiller method with electron density self-consistency. The
renormalization factors for the correlated Mn 3d orbitals in the paramagnetic
phase of BaMn_{2}As_{2} are shown to be generally smaller than those of
BaFe_{2}As_{2}, which indicates that BaMn_{2}As_{2} has stronger electron
correlation effect than BaFe_{2}As_{2}. The screening effect of the main As 4p
electrons to the correlated Fe/Mn 3d electrons is evident by the systematic
shift of the results to larger Hund's rule coupling J side from the ddp-model
compared with those from the d-model. A gradual transition from paramagnetic
state to the antiferromagnetic ground state with increasing J is obtained for
the models of BaFe_{2}As_{2} which has a small experimental magnetic moment;
while a rather sharp jump occurs for the models of BaMn_{2}As_{2}, which has a
large experimental magnetic moment. The key difference between the two systems
is shown to be the d-level occupation. BaMn_{2}As_{2}, with approximately five
d-electrons per Mn atom, is for same values of the electron correlations closer
to the transition to a Mott insulating state than BaFe_{2}As_{2}. Here an
orbitally selective transition, required for a system with close to six
electrons only occurs at significantly larger values for the Coulomb
interactions
- …