33,765 research outputs found

    The rare decay B --> X_s l^+ l^- to NNLL precision for arbitrary dilepton invariant mass

    Full text link
    We present a new phenomenological analysis of the inclusive rare decay B→Xsℓ+ℓ−B \to X_s \ell^+\ell^-. In particular, we present the first calculation of the NNLL contributions due to the leading two-loop matrix elements, evaluated for arbitrary dilepton invariant mass. This allows to obtain the first NNLL estimates of the dilepton mass spectrum and the lepton forward-backward asymmetry in the high Mℓ+ℓ−2 M^2_{\ell^+ \ell^-} region, and to provide an independent check of previously published results in the low Mℓ+ℓ−2 M^2_{\ell^+ \ell^-} region. The numerical impact of these NNLL corrections in the high-mass region (Mℓ+ℓ−2>14.4GeV2 M^2_{\ell^+ \ell^-} > 14.4 GeV^2) amounts to -13% in the integrated rate, and leads to a reduction of the scale uncertainty to ±3\pm 3%. The impact of non-perturbative contributions in this region is also discussed in detail.Comment: 40 pages, 12 figures. v2: extended phenomenological discussion; results unchanged; published versio

    A model of rotating hotspots for 3:2 frequency ratio of HFQPOs in black hole X-ray binaries

    Full text link
    We propose a model to explain a puzzling 3:2 frequency ratio of high frequency quasi-periodic oscillations (HFQPOs) in black hole (BH) X-ray binaries, GRO J1655-40, GRS 1915+105 and XTE J1550-564. In our model a non-axisymmetric magnetic coupling (MC) of a rotating black hole (BH) with its surrounding accretion disc coexists with the Blandford-Znajek (BZ) process. The upper frequency is fitted by a rotating hotspot near the inner edge of the disc, which is produced by the energy transferred from the BH to the disc, and the lower frequency is fitted by another rotating hotspot somewhere away from the inner edge of the disc, which arises from the screw instability of the magnetic field on the disc. It turns out that the 3:2 frequency ratio of HFQPOs in these X-ray binaries could be well fitted to the observational data with a much narrower range of the BH spin. In addition, the spectral properties of HFQPOs are discussed. The correlation of HFQPOs with jets from microquasars is contained naturally in our model.Comment: 8 pages, 4 figures. accepted by MNRA

    Neutrino emission from a GRB afterglow shock during an inner supernova shock breakout

    Full text link
    The observations of a nearby low-luminosity gamma-ray burst (GRB) 060218 associated with supernova SN 2006aj may imply an interesting astronomical picture where a supernova shock breakout locates behind a relativistic GRB jet. Based on this picture, we study neutrino emission for early afterglows of GRB 060218-like GRBs, where neutrinos are expected to be produced from photopion interactions in a GRB blast wave that propagates into a dense wind. Relativistic protons for the interactions are accelerated by an external shock, while target photons are basically provided by the incoming thermal emission from the shock breakout and its inverse-Compton scattered component. Because of a high estimated event rate of low-luminosity GRBs, we would have more opportunities to detect afterglow neutrinos from a single nearby GRB event of this type by IceCube. Such a possible detection could provide evidence for the picture described above.Comment: 6 pages, 2 figures, accepted for publication in MNRA

    Dynamic Pattern of Finite-Pulsed Beams inside One-dimensional Photonic Band Gap Materials

    Full text link
    The dynamics of two-dimensional electromagnetic (EM) pulses through one-dimensional photonic crystals (1DPC) has been theoretically studied. Employing the time expectation integral over the Poynting vector as the arrival time [Phys. Rev. Lett. 84, 2370, (2000)], we show that the superluminal tunneling process of EM pulses is the propagation of the net forward-going Poynting vector through the 1DPC, and the Hartman effect is due to the saturation effect of the arrival time (smaller and smaller time accumulated) of the net forward energy flow caused by the interference effect of the forward and the backward field (from the interfaces of each layer) happened in the region before the 1DPC and in the front part of the 1DPC.Comment: 18 pages, 4 figure

    The effect of Mach number on unstable disturbances in shock/boundary-layer interactions

    No full text
    The effect of Mach number on the growth of unstable disturbances in a boundary layer undergoing a strong interaction with an impinging oblique shock wave is studied by direct numerical simulation and linear stability theory (LST). To reduce the number of independent parameters, test cases are arranged so that both the interaction location Reynolds number (based on the distance from the plate leading edge to the shock impingement location for a corresponding inviscid flow) and the separation bubble length Reynolds number are held fixed. Small-amplitude disturbances are introduced via both white-noise and harmonic forcing and, after verification that the disturbances are convective in nature, linear growth rates are extracted from the simulations for comparison with parallel flow LST and solutions of the parabolized stability equations (PSE). At Mach 2.0, the oblique modes are dominant and consistent results are obtained from simulation and theory. At Mach 4.5 and Mach 6.85, the linear Navier-Stokes results show large reductions in disturbance energy at the point where the shock impinges on the top of the separated shear layer. The most unstable second mode has only weak growth over the bubble region, which instead shows significant growth of streamwise structures. The two higher Mach number cases are not well predicted by parallel flow LST, which gives frequencies and spanwise wave numbers that are significantly different from the simulations. The PSE approach leads to good qualitative predictions of the dominant frequency and wavenumber at Mach 2.0 and 4.5, but suffers from reduced accuracy in the region immediately after the shock impingement. Three-dimensional Navier-Stokes simulations are used to demonstrate that at finite amplitudes the flow structures undergo a nonlinear breakdown to turbulence. This breakdown is enhanced when the oblique-mode disturbances are supplemented with unstable Mack modes

    A comparative study of the electronic and magnetic properties of BaFe_2As_2 and BaMn_2As_2 using the Gutzwiller approximation

    Full text link
    To elucidate the role played by the transition metal ion in the pnictide materials, we compare the electronic and magnetic properties of BaFe_{2}As_{2} with BaMn_{2}As_{2}. To this end we employ the LDA+Gutzwiller method to analyze the mass renormalizations and the size of the ordered magnetic moment of the two systems. We study a model that contains all five transition metal 3d orbitals together with the Ba-5d and As-4p states (ddp-model) and compare these results with a downfolded model that consists of Fe/Mn d-states only (d-model). Electronic correlations are treated using the multiband Gutzwiller approximation. The paramagnetic phase has also been investigated using LDA+Gutzwiller method with electron density self-consistency. The renormalization factors for the correlated Mn 3d orbitals in the paramagnetic phase of BaMn_{2}As_{2} are shown to be generally smaller than those of BaFe_{2}As_{2}, which indicates that BaMn_{2}As_{2} has stronger electron correlation effect than BaFe_{2}As_{2}. The screening effect of the main As 4p electrons to the correlated Fe/Mn 3d electrons is evident by the systematic shift of the results to larger Hund's rule coupling J side from the ddp-model compared with those from the d-model. A gradual transition from paramagnetic state to the antiferromagnetic ground state with increasing J is obtained for the models of BaFe_{2}As_{2} which has a small experimental magnetic moment; while a rather sharp jump occurs for the models of BaMn_{2}As_{2}, which has a large experimental magnetic moment. The key difference between the two systems is shown to be the d-level occupation. BaMn_{2}As_{2}, with approximately five d-electrons per Mn atom, is for same values of the electron correlations closer to the transition to a Mott insulating state than BaFe_{2}As_{2}. Here an orbitally selective transition, required for a system with close to six electrons only occurs at significantly larger values for the Coulomb interactions
    • …
    corecore