1,663 research outputs found

    Differential Gene Expression in Normal Human Mammary Epithelial Cells Treated with Malathion Monitored by DNA Microarrays

    Get PDF
    Organophosphate pesticides are a major source of occupational exposure in the United States. Moreover, malathion has been sprayed over major urban populations in an effort to control mosquitoes carrying West Nile virus. Previous research, reviewed by the U.S. Environmental Protection Agency, on the genotoxicity and carcinogenicity of malathion has been inconclusive, although malathion is a known endocrine disruptor. Here, interindividual variations and commonality of gene expression signatures have been studied in normal human mammary epithelial cells from four women undergoing reduction mammoplasty. The cell strains were obtained from the discarded tissues through the Cooperative Human Tissue Network (sponsors: National Cancer Institute and National Disease Research Interchange). Interindividual variation of gene expression patterns in response to malathion was observed in various clustering patterns for the four cell strains. Further clustering identified three genes with increased expression after treatment in all four cell strains. These genes were two aldo–keto reductases (AKR1C1 and AKR1C2) and an estrogen-responsive gene (EBBP). Decreased expression of six RNA species was seen at various time points in all cell strains analyzed: plasminogen activator (PLAT), centromere protein F (CPF), replication factor C (RFC3), thymidylate synthetase (TYMS), a putative mitotic checkpoint kinase (BUB1), and a gene of unknown function (GenBank accession no. AI859865). Expression changes in all these genes, detected by DNA microarrays, have been verified by real-time polymerase chain reaction. Differential changes in expression of these genes may yield biomarkers that provide insight into interindividual variation in malathion toxicity

    TGF-beta 1 induces human alveolar epithelial to mesenchymal cell transition (EMT)

    Get PDF
    Background: Fibroblastic foci are characteristic features in lung parenchyma of patients with idiopathic pulmonary fibrosis (IPF). They comprise aggregates of mesenchymal cells which underlie sites of unresolved epithelial injury and are associated with progression of fibrosis. However, the cellular origins of these mesenchymal phenotypes remain unclear. We examined whether the potent fibrogenic cytokine TGF-β1 could induce epithelial mesenchymal transition (EMT) in the human alveolar epithelial cell line, A549, and investigated the signaling pathway of TGF-β1-mediated EMT. Methods: A549 cells were examined for evidence of EMT after treatment with TGF-β1. EMT was assessed by: morphology under phase-contrast microscopy; Western analysis of cell lysates for expression of mesenchymal phenotypic markers including fibronectin EDA (Fn-EDA), and expression of epithelial phenotypic markers including E-cadherin (E-cad). Markers of fibrogenesis, including collagens and connective tissue growth factor (CTGF) were also evaluated by measuring mRNA level using RT-PCR, and protein by immunofluorescence or Western blotting. Signaling pathways for EMT were characterized by Western analysis of cell lysates using monoclonal antibodies to detect phosphorylated Erk1/2 and Smad2 after TGF-β1 treatment in the presence or absence of MEK inhibitors. The role of Smad2 in TGF-β1-mediated EMT was investigated using siRNA. Results: The data showed that TGF-β1, but not TNF-α or IL-1β, induced A549 cells with an alveolar epithelial type II cell phenotype to undergo EMT in a time-and concentration-dependent manner. The process of EMT was accompanied by morphological alteration and expression of the fibroblast phenotypic markers Fn-EDA and vimentin, concomitant with a downregulation of the epithelial phenotype marker E-cad. Furthermore, cells that had undergone EMT showed enhanced expression of markers of fibrogenesis including collagens type I and III and CTGF. MMP-2 expression was also evidenced. TGF-β1-induced EMT occurred through phosphorylation of Smad2 and was inhibited by Smad2 gene silencing; MEK inhibitors failed to attenuate either EMT-associated Smad2 phosphorylation or the observed phenotypic changes. Conclusion: Our study shows that TGF-β1 induces A549 alveolar epithelial cells to undergo EMT via Smad2 activation. Our data support the concept of EMT in lung epithelial cells, and suggest the need for further studies to investigate the phenomenon

    What are the drivers of recurrent cholera transmission in Nigeria? Evidence from a scoping review

    Get PDF
    Background: The 2018 cholera outbreak in Nigeria affected over half of the states in the country, and was characterised by high attack and case fatality rates. The country continues to record cholera cases and related deaths to date. However, there is a dearth of evidence on context-specific drivers and their operational mechanisms in mediating recurrent cholera transmission in Nigeria. This study therefore aimed to fill this important research gap, with a view to informing the design and implementation of appropriate preventive and control measures. / Methods: Four bibliographic literature sources (CINAHL (Plus with full text), Web of Science, Google Scholar and PubMed), and one journal (African Journals Online) were searched to retrieve documents relating to cholera transmission in Nigeria. Titles and abstracts of the identified documents were screened according to a predefined study protocol. Data extraction and bibliometric analysis of all eligible documents were conducted, which was followed by thematic and systematic analyses. / Results: Forty-five documents met the inclusion criteria and were included in the final analysis. The majority of the documents were peer-reviewed journal articles (89%) and conducted predominantly in the context of cholera epidemics (64%). The narrative analysis indicates that social, biological, environmental and climatic, health systems, and a combination of two or more factors appear to drive cholera transmission in Nigeria. Regarding operational dynamics, a substantial number of the identified drivers appear to be functionally interdependent of each other. / Conclusion: The drivers of recurring cholera transmission in Nigeria are diverse but functionally interdependent; thus, underlining the importance of adopting a multi-sectoral approach for cholera prevention and control

    Tripeptide tyroserleutide plus doxorubicin: therapeutic synergy and side effect attenuation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Tripeptide tyroserleutide (YSL) is a novel small molecule anti-tumor polypeptide that has been shown to inhibit the growth of human liver cancer cells. In this study, we investigated the effects of YSL plus doxorubicin on the growth of human hepatocellular carcinoma BEL-7402 cells that had been transplanted into nude mice.</p> <p>Methods</p> <p>Nude mice bearing human hepatocellular carcinoma BEL-7402 tumors were treated with successive intraperitoneal injections of saline; low-, mid-, or high-dose doxorubicin; or low-, mid-, or high-dose doxorubicin plus YSL. Effects on the weight and volume of the tumors were evaluated.</p> <p>Results</p> <p>Co-administration of YSL and high-dose doxorubicin (6 mg/kg every other day) prolonged the survival time of tumor-bearing mice as compared to high-dose doxorubicin alone. As well, the anti-tumor effects of mid- and low-dose doxorubicin (2 and 0.7 mg/kg every other day, respectively) were enhanced when supplemented with YSL; the tumor growth inhibition rates for YSL plus doxorubicin were greater than the inhibition rates for the same dosages of doxorubicin alone. The combination of YSL and doxorubicin decreased chemotherapy-associated weight loss, leukocyte depression, and heart, liver, and kidney damage as compared to doxorubicin alone.</p> <p>Conclusion</p> <p>The combination of YSL plus doxorubicin enhances the anti-tumor effect and reduces the side effects associated with doxorubicin chemotherapy.</p

    Descriptive epidemiology of cholera outbreak in Nigeria, January-November, 2018: implications for the global roadmap strategy

    Get PDF
    Background: The cholera outbreak in 2018 in Nigeria reaffirms its public health threat to the country. Evidence on the current epidemiology of cholera required for the design and implementation of appropriate interventions towards attaining the global roadmap strategic goals for cholera elimination however seems lacking. Thus, this study aimed at addressing this gap by describing the epidemiology of the 2018 cholera outbreak in Nigeria. Methods: This was a retrospective analysis of surveillance data collected between January 1st and November 19th, 2018. A cholera case was defined as an individual aged 2 years or older presenting with acute watery diarrhoea and severe dehydration or dying from acute watery diarrhoea. Descriptive analyses were performed and presented with respect to person, time and place using appropriate statistics. Results: There were 43,996 cholera cases and 836 cholera deaths across 20 states in Nigeria during the outbreak period, with an attack rate (AR) of 127.43/100,000 population and a case fatality rate (CFR) of 1.90%. Individuals aged 15 years or older (47.76%) were the most affected age group, but the proportion of affected males and females was about the same (49.00 and 51.00% respectively). The outbreak was characterised by four distinct epidemic waves, with higher number of deaths recorded in the third and fourth waves. States from the north-west and north-east regions of the country recorded the highest ARs while those from the north-central recorded the highest CFRs. Conclusion: The severity and wide-geographical distribution of cholera cases and deaths during the 2018 outbreak are indicative of an elevated burden, which was more notable in the northern region of the country. Overall, the findings reaffirm the strategic role of a multi-sectoral approach in the design and implementation of public health interventions aimed at preventing and controlling cholera in Nigeri

    Role of the supine lateral radiograph of the spine in vertebroplasty for osteoporotic vertebral compression fracture: a prospective study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Severely collapsed vertebral compression fracture (VCF) is usually considered as a contraindication for vertebroplasty because of critically decreased vertebral height (less than one-third the original height). However, osteoporotic VCF can possess dynamic mobility with intravertebral cleft (IVC), which can be demonstrated on supine lateral radiographs (SuLR) and standing lateral radiographs (StLR). The purposes of this study were to: (1) evaluate the efficacy of SuLR to detect IVCs and assess the intravertebral mobility in VCFs, and (2) evaluate the short-term results of vertebroplasty in severely collapsed VCFs with IVCs.</p> <p>Methods</p> <p>We enrolled 37 patients with 40 symptomatic osteoporotic VCFs for vertebroplasty; 11 had severely collapsed VCFs with concurrent IVCs detected on the SuLR, the others had not-severely collapsed VCFs. A preoperative StLR, SuLR, magnetic resonance imaging (MRI), and postoperative StLR were taken from all patients. Radiographs were digitized to calculate vertebral body morphometrics including vertebral height ratio and Cobb's kyphotic angle. The intensity of the patient's pain was assessed by the visual analogue scale (VAS) on the day before operation and 1 day, 1 month, and 4 months after operation. The patient's VAS scores and image measurement results were assessed with the paired <it>t</it>-test and Pearson correlation tests; Mann-Whitney U test was used for VAS subgroup comparison. Significance was defined as <it>p </it>< 0.05.</p> <p>Results</p> <p>IVCs in patients with not-severely collapsed VCFs were detected in 21 vertebrae (72.4%) by MRI, in 15 vertebrae (51.7%) by preoperative SuLR, and in 7 vertebrae (24.1%) by preoperative StLR. Using the MRI as a gold standard to detect IVCs, SuLR exhibit a sensitivity of 0.71 as compared to StLR that yield a sensitivity of 0.33. In patients with VCFs with IVCs detected on SuLR, the average of the postoperative restoration in vertebral height ratio was significantly higher than that in those without IVCs (17.1% vs. 6.4%). There was no statistical difference in the VAS score between severely collapsed VCFs with IVCs detected on SuLR and not-severely collapsed VCFs at any follow-up time point.</p> <p>Conclusions</p> <p>The SuLR efficiently detects an IVC in VCF, which indicates a better vertebral height correction after vertebroplasty compared to VCF without IVC. Before performing a costly MRI, SuLR can identify more IVCs than StLR in patients with severely collapsed VCFs, whom may become the candidates for vertebroplasty.</p

    A model building exercise of mortality risk for Taiwanese women with breast cancer

    Get PDF
    Abstract Background The accurate estimation of outcome in patients with malignant disease is an essential component of the optimal treatment, decision-making and patient counseling processes. The prognosis and disease outcome of breast cancer patients can differ according to geographic and ethnic factors. To our knowledge, to date these factors have never been validated in a homogenous loco-regional patient population, with the aim of achieving accurate predictions of outcome for individual patients. To clarify this topic, we created a new comprehensive prognostic and predictive model for Taiwanese breast cancer patients based on a range of patient-related and various clinical and pathological-related variables. Methods Demographic, clinical, and pathological data were analyzed from 1 137 patients with breast cancer who underwent surgical intervention. A survival prediction model was used to allow analysis of the optimal combination of variables. Results The area under the receiver operating characteristic (ROC) curve, as applied to an independent validation data set, was used as the measure of accuracy. Results were compared by comparing the area under the ROC curve. Conclusions our model building exercise of mortality risk was able to predict disease outcome for individual patients with breast cancer. This model could represent a highly accurate prognostic tool for Taiwanese breast cancer patients.</p

    The Glasgow Norms:Ratings of 5,500 words on nine scales

    Get PDF
    The Glasgow Norms are a set of normative ratings for 5,553 English words on nine psycholinguistic dimensions: arousal, valence, dominance, concreteness, imageability, familiarity, age of acquisition, semantic size, and gender association. The Glasgow Norms are unique in several respects. First, the corpus itself is relatively large, while simultaneously providing norms across a substantial number of lexical dimensions. Second, for any given subset of words, the same participants provided ratings across all nine dimensions (33 participants/word, on average). Third, two novel dimensions—semantic size and gender association—are included. Finally, the corpus contains a set of 379 ambiguous words that are presented either alone (e.g., toast) or with information that selects an alternative sense (e.g., toast (bread), toast (speech)). The relationships between the dimensions of the Glasgow Norms were initially investigated by assessing their correlations. In addition, a principal component analysis revealed four main factors, accounting for 82% of the variance (Visualization, Emotion, Salience, and Exposure). The validity of the Glasgow Norms was established via comparisons of our ratings to 18 different sets of current psycholinguistic norms. The dimension of size was tested with megastudy data, confirming findings from past studies that have explicitly examined this variable. Alternative senses of ambiguous words (i.e., disambiguated forms), when discordant on a given dimension, seemingly led to appropriately distinct ratings. Informal comparisons between the ratings of ambiguous words and of their alternative senses showed different patterns that likely depended on several factors (the number of senses, their relative strengths, and the rating scales themselves). Overall, the Glasgow Norms provide a valuable resource—in particular, for researchers investigating the role of word recognition in language comprehension

    The influence of cardiovascular morbidity on the prognosis in prostate cancer. Experience from a 12-year nationwide Danish population-based cohort study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To determine the impact of preexisting ischemic heart disease (IHD) and stroke on overall survival in prostate cancer patients.</p> <p>Methods</p> <p>We conducted a cohort study of patients with incident prostate cancer registered in the Danish Cancer Registry from 1997 through 2008. We identified patients diagnosed with IHD or stroke prior to the date of prostate cancer diagnosis in the Danish National Patient Registry. We constructed Kaplan-Meier curves to analyze time to death and Cox regression was used to estimate hazard ratios (HRs) to compare mortality rates by preexisting IHD or stroke status, adjusting for age, stage, comorbidity, and calendar period.</p> <p>Results</p> <p>Of 30,721 prostate cancer patients, 4,276 (14%) had preexisting IHD and 1,331 (4%) preexisting stroke. Crude 1- and 5-year survival rates were 85% and 44% in men without preexisting IHD or stroke, 81% and 36% in men with preexisting IHD, and 78% and 27% in men with preexisting stroke. Adjusted HRs were 1.05 (95% CI 1.00-1.10) for patients with IHD and 1.20 (95% CI 1.12-1.30) for patients with stroke compared with patients without preexisting IHD or stroke.</p> <p>Conclusions</p> <p>Preexisting IHD had minimal impact on mortality in prostate cancer patients, whereas overall mortality was 20% higher in prostate cancer patients with preexisting stroke compared to those without IHD or stroke. These results highlight the importance of differentiating between various comorbidities.</p
    corecore