31,643 research outputs found

    Intrinsic interface exchange coupling of ferromagnetic nanodomains in a charge ordered manganite

    Full text link
    We present a detailed magnetic study of the Pr1/3Ca2/3MnO3 manganite, where we observe the presence of small ferromagnetic (FM) domains (diameter ~ 10A) immersed within the charge-ordered antiferromagnetic (AFM) host. Due to the interaction of the FM nanodroplets with a disordered AFM shell, the low-temperature magnetization loops present exchange bias (EB) under cooling in an applied magnetic field. Our analysis of the cooling field dependence of the EB yields an antiferromagnetic interface exchange coupling comparable to the bulk exchange constant of the AFM phase. We also observe training effect of the EB, which is successfully described in terms of a preexisting relaxation model developed for other classical EB systems. This work provides the first evidence of intrinsic interface exchange coupling in phase separated manganites.Comment: 7 pages, 6 figure

    The effect of Mach number on unstable disturbances in shock/boundary-layer interactions

    No full text
    The effect of Mach number on the growth of unstable disturbances in a boundary layer undergoing a strong interaction with an impinging oblique shock wave is studied by direct numerical simulation and linear stability theory (LST). To reduce the number of independent parameters, test cases are arranged so that both the interaction location Reynolds number (based on the distance from the plate leading edge to the shock impingement location for a corresponding inviscid flow) and the separation bubble length Reynolds number are held fixed. Small-amplitude disturbances are introduced via both white-noise and harmonic forcing and, after verification that the disturbances are convective in nature, linear growth rates are extracted from the simulations for comparison with parallel flow LST and solutions of the parabolized stability equations (PSE). At Mach 2.0, the oblique modes are dominant and consistent results are obtained from simulation and theory. At Mach 4.5 and Mach 6.85, the linear Navier-Stokes results show large reductions in disturbance energy at the point where the shock impinges on the top of the separated shear layer. The most unstable second mode has only weak growth over the bubble region, which instead shows significant growth of streamwise structures. The two higher Mach number cases are not well predicted by parallel flow LST, which gives frequencies and spanwise wave numbers that are significantly different from the simulations. The PSE approach leads to good qualitative predictions of the dominant frequency and wavenumber at Mach 2.0 and 4.5, but suffers from reduced accuracy in the region immediately after the shock impingement. Three-dimensional Navier-Stokes simulations are used to demonstrate that at finite amplitudes the flow structures undergo a nonlinear breakdown to turbulence. This breakdown is enhanced when the oblique-mode disturbances are supplemented with unstable Mack modes

    Yield strength measurement of ferromagnetic materials based on the inverse magnetostrictive effect

    Get PDF
    Ferromagnetic materials are widely used in industry and risking the hazards of aging and degradation of their mechanical properties. This paper proposed a non-destructive method for the measurement of the yield strength of ferromagnetic materials imprinted by the materials’ microstructure as the microstructure influences the pattern of the inverse magnetostrictive effect of ferromagnetic materials. For experimental verification, yield strengths of ferromagnetic specimens were measured on an electromagnetic ultrasonic transducer (EMAT) detection system. The relationship between electromagnetic acoustic transducer signals and the static magnetic field strength was obtained, from which we extracted the pattern parameters related to the yield strength. The regression model of the pattern parameters versus the yield strength was established and then verified with trial on a specimen processed in the same batch with a maximum prediction accuracy of 12.78%

    Disks around massive young stellar objects: are they common?

    Full text link
    We present K-band polarimetric images of several massive young stellar objects at resolutions \sim 0.1-0.5 arcsec. The polarization vectors around these sources are nearly centro-symmetric, indicating they are dominating the illumination of each field. Three out of the four sources show elongated low-polarization structures passing through the centers, suggesting the presence of polarization disks. These structures and their surrounding reflection nebulae make up bipolar outflow/disk systems, supporting the collapse/accretion scenario as their low-mass siblings. In particular, S140 IRS1 show well defined outflow cavity walls and a polarization disk which matches the direction of previously observed equatorial disk wind, thus confirming the polarization disk is actually the circumstellar disk. To date, a dozen massive protostellar objects show evidence for the existence of disks; our work add additional samples around MYSOs equivalent to early B-type stars.Comment: 9 pages, including 2 figures, 1 table, to appear on ApJ

    Lambda and Anti-Lambda Hypernuclei in Relativistic Mean-field Theory

    Full text link
    Several aspects about Λ\Lambda-hypernuclei in the relativistic mean field theory, including the effective Λ\Lambda-nucleon coupling strengths based on the successful effective nucleon-nucleon interaction PK1, hypernuclear magnetic moment and Λˉ\bar\Lambda-hypernuclei, have been presented. The effect of tensor coupling in Λ\Lambda-hypernuclei and the impurity effect of Λˉ\bar\Lambda to nuclear structure have been discussed in detail.Comment: 8 pages, 2 figures, Proceedings of the Sendai International Symposium "Strangeness in Nuclear and Hadronic Systems SENDAI08

    Numerical simulation study on the influence of current stabilizer on tundish flow field

    Get PDF
    The software ProCAST is used to simulate the flow field in the tundish. In the tundish without current regulator, the long nozzle injection impacts the tundish bottom directly, which is easy to cause damage to the refractory. The molten steel flow diffuses far along the bottom, and the disturbance is large near the submerged nozzle. The maximum speed at the bottom can reach 0.8m/s, and the general flow trend is that the injection flow direction is upward from the bottom to both sides, which is not conducive to the upward floating of inclusions. In the tundish with current stabilizer, the velocity of the injection decreases rapidly under the action of the liquid steel contained in the current stabilizer. Due to the attenuation of injection kinetic energy, the scouring effect on the bottom of tundish is obviously smaller and the flow field is more stable

    Phase equilibrium in two orbital model under magnetic field

    Full text link
    The phase equilibrium in manganites under magnetic field is studied using a two orbital model, based on the equivalent chemical potential principle for the competitive phases. We focus on the magnetic field induced melting process of CE phase in half-doped manganites. It is predicted that the homogenous CE phase begins to decompose into coexisting ferromagnetic phase and CE phase once the magnetic field exceeds the threshold field. In a more quantitative way, the volume fractions of the two competitive phases in the phase separation regime are evaluated.Comment: 4 pages, 4 figure

    Precise dispersive data analysis of the f0(600) pole

    Get PDF
    We review how the use of recent precise data on kaon decays together with forward dispersion relations (FDR) and Roy's equations allow us to determine the sigma resonance pole position very precisely, by using only experimental input. In addition, we present preliminary results for a modified set of Roy-like equations with only one subtraction, that show a remarkable improvement in the precision around the sigma region. We also improve the matching between the parametrizations at low and intermediate energy of the S0 wave, and show that the effect of this on the sigma pole position is negligible.Comment: 4 pages, 1 figure. To appear in the proceedings of the Meson 2008 conference, June 6-10, Cracow, Polan

    A Centimeter-Sized Quaternary Ti-Zr-Be-Ag Bulk Metallic Glass

    Get PDF
    A novel centimeter-sized Ti-based bulk metallic glass (BMG) was developed by the addition of Ag in the ternary Ti41Zr25Be34 glassy alloy. By replacing Be with Ag, the glass forming ability (GFA), the yield strength, and the supercooled liquid temperature of the quaternary Ti41Zr25Be34−xAgx (x=2, 4, 6, 8 at.%) glassy alloys have been obviously enhanced. Among the developed Ti-Zr-Be-Ag alloy systems, the Ti41Zr25Be28Ag6 alloy possesses the largest critical diameter (Dmax) of 10 mm, while the yield strength is also enhanced to 1961 MPa, which is much larger than that of Ti41Zr25Be34 (1755 MPa) alloy. The experimental results show that Ag is an effective element for improving the GFA and the yield strength of Ti-Zr-Be glassy alloy
    corecore