16,362 research outputs found

    Pattern Classification Based On Multi-Hyperellipsoid Clustering.

    Get PDF
    Traditional model-based pattern classification is based on the assumption that the distribution of the training samples of each pattern class can be formulated by a single statistical function. It is difficult to make an accurate classification by the traditional method when the training samples of different classes do not bind to this assumption. The main contribution of this research is the development of a new clustering technique, called Multi-Hyperellipsoid Clustering, that is able to handle any irregular pattern distributions. The new method uses a supervised maximum likelihood estimation to derive a set of distribution functions for the training samples of each class, and then uses an improved Bayesian probability decision model to partition the pattern space. The new classifier achieved a higher rate of correct classification than the traditional method, with respect to some rather complex pattern distributions in a number of test examples

    Model predictive control of electric machines in commercial vehicles

    Get PDF
    corecore