7 research outputs found

    Drivers of Spatiotemporal Eukaryote Plankton Distribution in a Trans-Basin Water Transfer Canal in China

    Get PDF
    Planktonic eukaryotes are important components of aquatic ecosystems, and analyses of the whole eukaryotic planktonic community composition and function have far-reaching significance for water resource management. We aimed to understand the spatiotemporal variation and drivers of eukaryotic plankton distribution in the Middle Route Project of the South-to-North Water Diversion in Henan Province, China. Specifically, we examined planktonic assemblages and water quality at five stations along the canal and another one located before the dam in March, June, September, and December 2019. High-throughput sequencing revealed that the eukaryotic plankton community was primarily composed of 53 phyla, 200 genera, and 277 species, with Cryptophyta, Ciliophora, and norank_k_Cryptophyta being the dominant phyla. Redundancy analysis of the eukaryotic community and environmental factors showed that five vital factors affecting eukaryotic plankton distribution were oxidation-reduction potential, nitrate nitrogen, pH, total phosphorus, and water flow velocity. Furthermore, the geographical distribution of eukaryotic communities was consistent with the distance decay model. Importantly, environmental selection dominantly shaped the geographical distribution of the eukaryotic community. In summary, our study elucidates the ecological response of planktonic eukaryotes by identifying the diversity and ecological distribution of planktonic eukaryotes in trans-basin diversion channels

    Disease detection by next-generation sequencing in multiple myeloma

    No full text
    Copyright © 2019 Yao, Bai, Orfao and Chim.Next-generation sequencing (NGS) has been applied to monitor minimal residual disease (MRD) in multiple myeloma (MM). Standardized DNA input and sequencing depth is essential for achieving a uniform sensitivity in NGS-based MRD study. Herein, the sensitivity of 10−5 was verified by a standardized experimental design based on triplicate measurements of 1 μg DNA input and 1 million sequencing reads using the LymphoTrack-MiSeq platform. MRD level was defined as the mean MRD burden of the triplicates. Two spike-in controls at concentrations of 0.001% tumor plasma cells (PC) for verifying the sensitivity of 10−5 and 0.01% (or 0.005%) for MRD normalization were systematically analyzed. The spike-in control of 0.001% MRD was consistently detected in all samples, confirming a sensitivity of 10−5. Moreover, this standardized NGS approach yielded MRD measurements concordant with serological response and comparable to allele-specific oligonucleotide (ASO) real-time quantitative (RQ)-PCR. Moreover, NGS showed an improved sensitivity and provided quantification of MRD for cases assigned “positive but not quantifiable” (PNQ) by ASO RQ-PCR, even without the use of patient-specific probes/primers. Issues regarding the specificity of myeloma-specific sequences as MRD target, optimal input for spike-in normalization, and interpretation of MRD from triplicates are discussed. Herein, the standardized LymphoTrack-MiSeq-based method is verified to carry a sensitivity of 10−5, hence an effective tool for MRD monitoring in MM. As only a small number of samples are tested here, further study with a larger number of patients is warranted.This work was supported by Hong Kong Blood Cancer Foundation and National Natural Science Foundation of China (81470369) awarded to CC

    Upgraded standardized minimal residual disease detection by next-generation sequencing in multiple myeloma

    No full text
    Minimal residual disease (MRD) is one of the most powerful prognostic factors in multiple myeloma. Therefore, standardization and easy operation of MRD testing are crucial. Previously, we validated the sensitivity of 10−5 with spike in of plasmid controls for a standardized next-generation sequencing (NGS) approach based on triplicate measurements of bone marrow by LymphoTrack-MiSeq platform. To improve the technique, we replaced spike-in plasmid controls by genomic DNA from myeloma cells. A spike-in control of 0.001% was consistently detected in all 19 samples tested, confirming a uniform sensitivity of 10−5 of this upgraded protocol. MRD was detected in 14 of 19 patients (78%), with a significant (P = 0.04) impact on progression-free survival based on high versus low MRD levels. Reproducibility of detection was confirmed by the extremely small interrun variation tested in three patients. In nine patients, MRD was tested in parallel by allele-specific oligonucleotide real-time quantitative PCR. NGS showed an improved sensitivity and provided quantification of MRD for cases assigned positive but not quantifiable by real-time quantitative PCR, obviating the need of patient-specific probes/primers. In summary, the use of genomic DNA as spike-in control simplifies NGS detection of MRD while preserving the sensitivity of 10−5. Validity and reproducibility of the standardized procedure were verified, and the prognostic impact of NGS-based MRD in myeloma was confirmed.Supported by Hong Kong Blood Cancer Foundation grant AR170007 (C.S.C.) and National Natural Science Foundation of China grant 81470369 (C.S.C.).Peer reviewe

    Research and Application of Supersaturated Dissolved Oxygen Technology Combined with Magnetization Technology in the Improvement of Water Quality: Taking the South-to-North Water Diversion Project of China as a Pilot Project

    No full text
    Supersaturated dissolved oxygen and magnetization (SDOXM) technology is a composite technology that combines supersaturated dissolved oxygen with water magnetization technologies. Compared with conventional water purification technology, the advantages introduced by such technology include obvious and efficient improvement in purified water quality without adding any chemicals, removing sludge and changing the original function of the river. In this study, taking the Middle-Route (MR) of the South-to-North Water Diversion Project of China (SNWDPC) as a pilot project, the effects of the SDOXM composite process on microbial activity, phytoplankton community structure, and removal efficiency of the main nutritional indexes in the canal of the MR were evaluated. Aiming at static and flowing water bodies, this study was divided into two parts: static and dynamic experiments (two groups: a group with artificial aquatic plants and another group without artificial aquatic plants). The performance of the SDOXM system was assessed by monitoring the organic matter removal as well as the relative light unit (RLU) of ATP, changes in the community structure of phytoplankton, and the effects of artificial aquatic plants as a biofilm carrier on organic matter removal and microbial activity. During the study period, SDOXM technology was able to increase the concentration of dissolved oxygen (DO) in water and maintained the state of supersaturation for more than three days. The removal effect of organic matter from water was obvious. The community structure of phytoplankton changed from the Bacillariophyta-Cyanophyta type to the Bacillariophyta-Cyanobacteria type. Finally, the introduction of artificial aquatic plants has contributed to the improvement in water quality. Therefore, SDOXM technology can be used as a new water quality improvement technology to enhance the self-restoration ability of a river natural ecology

    Succession and Driving Factors of Periphytic Community in the Middle Route Project of South-to-North Water Division (Henan, China)

    No full text
    The Middle Route Project of the South-to-North Water Diversion is an artificially independent system that does not connect to other surface waters. Excessive periphyton proliferation causes a series of environmental problems in the canal. In this study, the periphyton community and environmental factors on the left and right banks of the canal in the algal growing area were investigated and sampled six times (June, September, and November of 2019 and 2020). The succession pattern of the attached organism community in the artificial canal was analyzed, and the key factors affecting the algal community were analyzed using RDA and GAM. The results showed that the seasonal variability of the environmental factors was more significant than the spatial variability. A total of 114 taxa of periphytic algae were found, belonging to seven phyla and 69 genera, and mainly composed of Bacillariophyta. Species richness was ranked as Bacillariophyta (60 taxa), Chlorophyta (31 taxa) and Cyanobacteria (15 taxa), and higher in autumn than in summer. The dominant taxa were Cymbella sp., Fragilaria sp., Navicula sp. and Diatoma sp. The abundance of periphytic algal varied from 0.07 × 105 to 8.99 × 105 ind./cm2, with trends similar to that of species richness. The redundancy analysis and generalized additive model showed that water temperature and nutrient concentration were the key factors influencing the structure of the algal community, followed by discharge rate and velocity, which were the determinants of the spatial and temporal patterns of the algal community. In view of the influence of discharge and velocity on the structure of algal communities, it is suggested that ecological scheduling could be used to regulate the structure of the algal community on the canal wall in the operation of later water division projects to ensure the safety of water division

    Driving Factors of Total Organic Carbon in Danjiangkou Reservoir Using Generalized Additive Model

    No full text
    Dynamic changes in total organic carbon (TOC) concentration in lakes and reservoirs affect the functions of aquatic ecosystems and are a key component of water quality management, especially in drinking water sources. The Danjiangkou Reservoir is the water source area of the Middle Route Project of the South-to-North Water Diversion in China. Its water quality is of critical importance to the safety of water diversion. TOC concentration and other environmental factors at 19 sampling sites in the Danjiangkou Reservoir were investigated quarterly during 2020–2021 to explore the differences at the spatio-temporal scales. A generalized additive model (GAM) was used to analyze the environmental factors correlated with the observed spatio-temporal variations of TOC concentration. The results showed that the comprehensive trophic level index (TLI) of the Danjiangkou Reservoir was under the state of intermediate nutrition, and the water quality was overall good. In terms of temporal patterns, TOC concentration was higher in both spring and summer and lower in other seasons. Spatially, TOC concentrations were found in descending order from the site of outlet, Han reservoir, entrance of reservoir, and Dan reservoir. The single-factor GAM model showed that TOC correlated with different environmental factors across spatio-temporal scales. Water temperature (WT), permanganate index (CODMn), and ammonia nitrogen (NH4+-N) were significantly correlated with TOC in autumn, but only total nitrogen (TN) and transparency (SD) were significant in winter. Spatially, WT, chemical oxygen demand (COD), NH4+-N, TN, and conductivity (Cond) correlated with TOC in the Dan reservoir, but WT, COD, NH4+-N, total phosphorus (TP), and chlorophyll a (Chl.a) were significant in the Han reservoir. The multi-factor GAM model indicated that the environmental factors correlated with TOC concentration were mainly WT, TN, Cond, CODMn, and TP, among which WT and Cond showed a significant linear relationship with TOC concentration (edf = 1, p < 0.05), while TN, CODMn, and TP had a significant nonlinear relationship with TOC concentration (edf > 1, p < 0.05). Comprehensive trophic level index (TLI) and TOC concentration revealed a highly significant correlation (R2 = 0.414, p < 0.001). Therefore, the GAM model could well explain the environmental factors associated with the spatio-temporal dynamics of TOC concentration, providing a reference for the evaluation of water quality and research on the carbon cycle in similar inland reservoirs
    corecore