42 research outputs found

    Effects on global warming by microbial methanogenesis in alkaline lakes during the Late Paleozoic Ice Age (LPIA)

    Get PDF
    This work was jointly funded by the National Natural Science Foundation of China (Grant Nos . 42230808, 42203055 and 41830425) and PetroChina Science and Technology Major project (Grant No. 20 21DJ0108).Methane (CH4) is an important greenhouse gas, but its behavior and influencing factors over geological time scales are not sufficiently clear. This study investigated the Late Paleozoic Ice Age (LPIA), which is thought to have experienced an interval of rapid warming at ca. 304 Ma, that may have been analogous to modern warming. To explore possible causes of this warming event, we investigated ancient alkaline lakes in the Junggar Basin, northwestern China. Results show that microbial CH4 cycling here was strong, as evidenced by carbonate δ13C (δ13Ccarb) values of >5‰, ∼+0.6‰ offsets between pristane δ13C (δ13CPr) and phytane δ13C (δ13CPh) values, a 3β-methylhopane index of 9.5% ± 3.0%, and highly negative δ13C values of hopanes (−44‰ to −61‰). Low sulfate concentrations in the alkaline lakes made methanogenic archaea more competitive than sulfate-reducing bacteria, and the elevated levels of dissolved inorganic carbon promoted methanogenesis. Biogenic CH4 emissions from alkaline lakes, in addition to CO2, may have contributed to rapid climate warming.PostprintPeer reviewe

    Effect of the Formation of Amorphous Networks on the Structure and Hydration Characteristics of Granulated Blast Furnace Slag

    No full text
    The slag obtained in the process of pig iron smelting has been widely used, but the variational hydration activity always is a significant factor affecting its quality. In this experiment, the laboratory simulated slag was prepared by adjusting the chemical composition and cooling method. The experiment primary characterized the structure and hydration process with different types of slag by using MAS NMR, XRD, compressive strength, ICP, SEM, and hydration heat, then obtained the influence of the composition of the network former S/A (the mass ratio of SiO2 and Al2O3 in chemical composition) and amorphous phase content on its structure and hydration activity. The result shows that lowering the S/A value can reduce the degree of vitreous polymerization in the slag; reducing the S/A value of the slag can make the slag hydration time advance, and consequently, the cumulative exotherm increases, the liquid phase Ca/Si and Al/Si ionic ratio increases, and the hydration product changes from C–S–H gel to C–A–S–H gel, which ultimately leads to an increase in compressive strength. In the high S/A value slag, the formation of the trace crystal phase of gehlenite is beneficial to reduce the degree of polymerization of the amorphous

    Psychosocial intervention for schizophrenia

    No full text
    Schizophrenia is a serious mental illness. The main treatment of schizophrenia is antipsychotic medications. Meanwhile, psychosocial treatment can be incorporated to improve the efficacy of treatment, including cognitive behavioral therapy, cognitive remediation therapy, family therapy, psychoeducation, social skill training, and vocational rehabilitation. This study aimed to summarize the efficacy of various psychosocial interventions for schizophrenia through a literature review. The literature search was conducted by using the keywords “schizophrenia” and “psychosocial intervention,” “cognitive remediation therapy” “cognitive behavior therapy,” “family intervention,” “psychoeducation,” “social skill training” or “vocational rehabilitation” on PubMed, CENTRAL, Wiley Online Library and Web of Science. Psychosocial intervention can further improve the symptoms and functioning of patients, enhance drug compliance, reduce the recurrence and readmission rates, and increase the employment rate when added to treatment as usual

    Climate Reconstruction based on Pollen Analysis in Inner Mongolia, North China from 51.9 to 30.6 kaBP

    No full text
    The palynomorph assemblage of lake sediments younger than 51.9 kaBP from Wulagai Gobi in Inner Mongolia was analyzed to reconstruct the vegetation and climate. From 51.9 to 30.6 kaBP, the vegetation was arid to semi-arid grassland with only slight changes. According to the palynomorphs, trees and shrubs were very rare. The large number and diversity of algae indicate the presence of a lake. Quantitative climatic conditions were reconstructed using the Best Analogues Method. The results indicate that the annual mean temperature was higher than that at present. The combination of temperature and annual precipitation suggests a change in the climate from cool dry to warm dry and then cool humid. Our results show that the annual precipitation values were mostly higher than that at present but were lower than 400 mm. It infers that the study area was already within the arid to semi-arid regions but with a stronger influence of the summer monsoon during 51.9 to 30.6 kaBP than at present. With slight differences mainly in time scale, the changing trend of the annual temperature curve is consistent with the other climatic records from Antarctica, Greenland, Hulu Cave (East China), and the Tibetan Plateau during the last glacial period. From 30.6 kaBP to present, very few palynomorphs were detected in the samples. Hence, no information about the vegetation and climate could be extracted. Combined with other studies during Late Pleistocene, we presume that the reason for the lack of pollen during this period was caused by an abrupt temperature fall after 30.6 kaBP or that the lacustrine conditions were unsuitable for pollen deposition. It was probably incurred by the oxidation on land prior to deposition. But for those samples only with algae, it might be caused by the fact that algae could finish their life history in a very short time in a seasonal lake

    Basic Characteristics of Flower Transcriptome Data and Derived Novel EST-SSR Markers of <i>Luculia yunnanensis</i>, an Endangered Species Endemic to Yunnan, Southwestern China

    No full text
    Luculia yunnanensis (Rubiaceae), an evergreen shrub or small tree, is endemic to China and confined to Nujiang Prefecture, Yunnan Province. This plant is of high ornamental value owing to its attractive pink flowers, sweet fragrance, and long flowering period. Due to the influence of climate change and human factors, the distribution range of L. yunnanensis has exhibited a significant shrinking trend, and it has become a vulnerable species that is in urgent need of conservation and rational utilization research. In this study, the flower transcriptome sequencing of L. yunnanensis was conducted using an Illumina HiSeq platform. We designed and developed a series of EST-SSR primers based on the flower transcriptome data of L. yunnanensis. The results showed that 98,389 unigenes were obtained from the L. yunnanensis flower transcriptome, all of which were aligned with sequences in public databases. Nr, Nt, Pfam, KOG/COG, Swiss-Prot, KEGG, and GO annotated 31,859, 13,853, 22,684, 10,947, 21,416, 9722, and 23,390 unigenes, respectively. The MISA (Microsatellite) tool was used to identify SSR loci from all unigenes, and a total of 15,384 SSRs were identified. Repeat motifs were given priority with mononucleotides, dinucleotides, and trinucleotides. The 81 primer pairs were synthesized randomly, of which 44 pairs showed effective amplification. A total of 17 primers showed stable amplification, and rich polymorphism was observed in 6 populations. We concluded via genetic diversity analysis that the average effective number of alleles (Ne), Shannon’s information index (I), and polymorphism information content (PIC) were 1.925, 0.837, and 0.403, respectively. In conclusion, 17 EST-SSR primers can be used for subsequent population genetic diversity analysis and molecular-marker-assisted breeding, which is of great significance for formulating resource conservation and utilization strategies for L. yunnanensis

    Geoeffectiveness of Interplanetary AlfvĂŠn Waves. I. Magnetopause Magnetic Reconnection and Directly Driven Substorms

    No full text
    In particular during the descending phase of the solar cycle, Alfvén waves in the high-speed solar wind streams are a major form of interplanetary disturbances. The fluctuating southward interplanetary magnetic field (IMF) of Alfvén waves has been suggested to induce geomagnetic activities through intermittent magnetic reconnection at the magnetopause. In this study, we provide in situ observational evidence for dayside magnetopause reconnection induced by such interplanetary Alfvén waves. Using multipoint conjunction observations, we show that the IMF B _z from interplanetary Alfvén waves is transmitted through and amplified by the Earth’s bow shock. Associated with the intensified southward B _z to the magnetopause, in situ signatures of magnetic reconnection are detected. Repetitively, interplanetary Alfvén waves transmit the intensified B _z to the magnetosheath, leading to intervals of large magnetic shear angles across the magnetopause and magnetopause reconnection. Such intervals are promptly followed by hundreds of nanoTesla (nT) increases in the auroral electrojet indices (AE and AU) within 10–20 minutes. These observations are confirmed in multiple events in corotating interaction region-driven geomagnetic storms. To put the observations into context, we propose a phenomenological model of a strongly driven substorm. The substorm electrojet is linked to the enhanced magnetopause reconnection in the short timescale of re-establishing the ionosphere electric field and the two-cell convection. These results provide insights on the temporal patterns of solar wind magnetosphere–ionosphere coupling, especially during the descending phase of the solar cycle
    corecore