12 research outputs found

    Architectures for Multinode Superconducting Quantum Computers

    Full text link
    Many proposals to scale quantum technology rely on modular or distributed designs where individual quantum processors, called nodes, are linked together to form one large multinode quantum computer (MNQC). One scalable method to construct an MNQC is using superconducting quantum systems with optical interconnects. However, a limiting factor of these machines will be internode gates, which may be two to three orders of magnitude noisier and slower than local operations. Surmounting the limitations of internode gates will require a range of techniques, including improvements in entanglement generation, the use of entanglement distillation, and optimized software and compilers, and it remains unclear how improvements to these components interact to affect overall system performance, what performance from each is required, or even how to quantify the performance of each. In this paper, we employ a `co-design' inspired approach to quantify overall MNQC performance in terms of hardware models of internode links, entanglement distillation, and local architecture. In the case of superconducting MNQCs with microwave-to-optical links, we uncover a tradeoff between entanglement generation and distillation that threatens to degrade performance. We show how to navigate this tradeoff, lay out how compilers should optimize between local and internode gates, and discuss when noisy quantum links have an advantage over purely classical links. Using these results, we introduce a roadmap for the realization of early MNQCs which illustrates potential improvements to the hardware and software of MNQCs and outlines criteria for evaluating the landscape, from progress in entanglement generation and quantum memory to dedicated algorithms such as distributed quantum phase estimation. While we focus on superconducting devices with optical interconnects, our approach is general across MNQC implementations.Comment: 23 pages, white pape

    Analysis of post-traumatic growth status and its influencing factors in patients with facial palsy

    No full text
    Abstract Background Facial nerve paralysis in patients occurs in varying degrees of self-image disorders, both physically and mentally, resulting in low self-esteem, anxiety, depression, and even suicide; however, there were few researches on psychological problems in facial palsy patients at home and abroad. This study’s objective was to investigate post-traumatic growth (PTG) in facial nerve palsy patients and analyze its influencing factors. Methods Using the convenience sampling method, a total of 47 patients with facial nerve paralysis were enrolled in the current study between June 1, 2016, and May 31, 2017. Post-traumatic growth rating scale was utilized to investigate the post-traumatic growth of these patients, and factors influencing patients’ post-traumatic growth were analyzed through collecting the general sociological information, disease-related information, simple coping style questionnaire, and social support rating scale. Results The total score of post-traumatic growth in patients with facial nerve paralysis was mean (M) = 63.1, standard deviation (SD) = 19.14. The ranking of five dimensional scores from high to low was as follows: new possibilities, personal strength enhancement, appreciation of life, mental changes, and improvement of relationships with others. Multiple linear regression analysis showed that six variables, namely, the personality type, duration with facial nerve paralysis, and four coping styles, consisting of three types of positive coping styles and one negative coping style, could explain 71.6% of the total post-traumatic growth score. Conclusions Post-traumatic growth in facial nerve palsy patients is moderate. The personality type of patients, the disease duration, and the coping style are the primary influencing factors. Therefore, clinical staffs should perform personalized nursing protocol and psychological intervention for facial nerve palsy patients to reduce their negative mood, improve their compliance with treatment, and help them recover more rapidly

    Genome-wide profiling of RNA editing sites in sheep

    No full text
    Abstract Background The widely observed RNA-DNA differences (RDDs) have been found to be due to nucleotide alteration by RNA editing. Canonical RNA editing (i.e., A-to-I and C-to-U editing) mediated by the adenosine deaminases acting on RNA (ADAR) family and apolipoprotein B mRNA editing catalytic polypeptide-like (APOBEC) family during the transcriptional process is considered common and essential for the development of an individual. To date, an increasing number of RNA editing sites have been reported in human, rodents, and some farm animals; however, genome-wide detection of RNA editing events in sheep has not been reported. The aim of this study was to identify RNA editing events in sheep by comparing the RNA-seq and DNA-seq data from three biological replicates of the kidney and spleen tissues. Results A total of 607 and 994 common edited sites within the three biological replicates were identified in the ovine kidney and spleen, respectively. Many of the RDDs were specific to an individual. The RNA editing-related genes identified in the present study might be evolved for specific biological functions in sheep, such as structural constituent of the cytoskeleton and microtubule-based processes. Furthermore, the edited sites found in the ovine BLCAP and NEIL1 genes are in line with those in previous reports on the porcine and human homologs, suggesting the existence of evolutionarily conserved RNA editing sites and they may play an important role in the structure and function of genes. Conclusions Our study is the first to investigate RNA editing events in sheep. We screened out 607 and 994 RNA editing sites in three biological replicates of the ovine kidney and spleen and annotated 164 and 247 genes in the kidney and spleen, respectively. The gene function and conservation analysis of these RNA editing-related genes suggest that RNA editing is associated with important gene function in sheep. The putative functionally important RNA editing sites reported in the present study will help future studies on the relationship between these edited sites and the genetic traits in sheep

    Transcriptome Analysis of Improved Wool Production in Skin-Specific Transgenic Sheep Overexpressing Ovine β-Catenin

    No full text
    β-Catenin is an evolutionarily conserved molecule in the canonical Wnt signaling pathway, which controls decisive steps in embryogenesis and functions as a crucial effector in the development of hair follicles. However, the molecular mechanisms underlying wool production have not been fully elucidated. In this study, we investigated the effects of ovine β-catenin on wool follicles of transgenic sheep produced by pronuclear microinjection with a skin-specific promoter of human keratin14 (k14). Both polymerase chain reaction and Southern blot analysis showed that the sheep carried the ovine β-catenin gene and that the β-catenin gene could be stably inherited. To study the molecular responses to high expression of β-catenin, high-throughput RNA-seq technology was employed using three transgenic sheep and their wild-type siblings. These findings suggest that β-catenin normally plays an important role in wool follicle development by activating the downstream genes of the Wnt pathway and enhancing the expression of keratin protein genes and keratin-associated protein genes

    Green, Biodegradable, Underwater Superoleophobic Wood Sheet for Efficient Oil/Water Separation

    No full text
    Superwettable (by water or oil) materials have been used in oil/water separation to cope with the growing oily industrial sewage discharge and oil spill accidents. The artificial superwetting materials for oil/water separation that have been previously reported are expensive, and using them usually causes secondary pollution, so practical, large-scale uses of those materials are limited. Here, we find that wood sheet shows underwater superoleophobicity and low oil adhesion in water, resulting from its strong capacity of absorbing water. A through-microhole array was created on the wood sheet surface by a simple mechanical drilling process. The prewetted porous sheet had great ability to separate the mixtures of water and oil with high separation efficiency. Wood is a low cost, green, and natural eco-friendly material; therefore, we believe that such a simple, low-cost, efficient, and green route of large-scale oil/water separation has great potential to practically solve the pollution problems caused by oil spill and oily industrial wastewater

    Green, Biodegradable, Underwater Superoleophobic Wood Sheet for Efficient Oil/Water Separation

    No full text
    Superwettable (by water or oil) materials have been used in oil/water separation to cope with the growing oily industrial sewage discharge and oil spill accidents. The artificial superwetting materials for oil/water separation that have been previously reported are expensive, and using them usually causes secondary pollution, so practical, large-scale uses of those materials are limited. Here, we find that wood sheet shows underwater superoleophobicity and low oil adhesion in water, resulting from its strong capacity of absorbing water. A through-microhole array was created on the wood sheet surface by a simple mechanical drilling process. The prewetted porous sheet had great ability to separate the mixtures of water and oil with high separation efficiency. Wood is a low cost, green, and natural eco-friendly material; therefore, we believe that such a simple, low-cost, efficient, and green route of large-scale oil/water separation has great potential to practically solve the pollution problems caused by oil spill and oily industrial wastewater

    Artificial Virus Delivers CRISPR-Cas9 System for Genome Editing of Cells in Mice

    No full text
    CRISPR-Cas9 has emerged as a versatile genome-editing platform. However, due to the large size of the commonly used CRISPR-Cas9 system, its effective delivery has been a challenge and limits its utility for basic research and therapeutic applications. Herein, a multifunctional nucleus-targeting “core-shell” artificial virus (RRPHC) was constructed for the delivery of CRISPR-Cas9 system. The artificial virus could efficiently load with the CRISPR-Cas9 system, accelerate the endosomal escape, and promote the penetration into the nucleus without additional nuclear-localization signal, thus enabling targeted gene disruption. Notably, the artificial virus is more efficient than SuperFect, Lipofectamine 2000, and Lipofectamine 3000. When loaded with a CRISPR-Cas9 plasmid, it induced higher targeted gene disruption efficacy than that of Lipofectamine 3000. Furthermore, the artificial virus effectively targets the ovarian cancer <i>via</i> dual-receptor-mediated endocytosis and had minimum side effects. When loaded with the Cas9-hMTH1 system targeting MTH1 gene, RRPHC showed effective disruption of MTH1 <i>in vivo</i>. This strategy could be adapted for delivering CRISPR-Cas9 plasmid or other functional nucleic acids <i>in vivo</i>
    corecore