462 research outputs found

    Weak electron–phonon coupling contributing to high thermoelectric performance in n-type PbSe

    Get PDF
    PbSe is a surprisingly good thermoelectric material due, in part, to its low thermal conductivity that had been overestimated in earlier measurements. The thermoelectric figure of merit, zT, can exceed 1 at high temperatures in both p-type and n-type PbSe, similar to that found in PbTe. While the p-type lead chalcogenides (PbSe and PbTe) benefit from the high valley degeneracy (12 or more at high temperature) of the valence band, the n-type versions are limited to a valley degeneracy of 4 in the conduction band. Yet the n-type lead chalcogenides achieve a zT nearly as high as the p-type lead chalcogenides. This effect can be attributed to the weaker electron–phonon coupling (lower deformation potential coefficient) in the conduction band as compared with that in the valence band, which leads to higher mobility of electrons compared to that of holes. This study of PbSe illustrates the importance of the deformation potential coefficient of the charge-carrying band as one of several key parameters to consider for band structure engineering and the search for high performance thermoelectric materials

    Global incidence, prevalence, years lived with disability (YLDs), disability-adjusted life-years (DALYs), and healthy life expectancy (HALE) for 371 diseases and injuries in 204 countries and territories and 811 subnational locations, 1990–2021:a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    BackgroundDetailed, comprehensive, and timely reporting on population health by underlying causes of disability and premature death is crucial to understanding and responding to complex patterns of disease and injury burden over time and across age groups, sexes, and locations. The availability of disease burden estimates can promote evidence-based interventions that enable public health researchers, policy makers, and other professionals to implement strategies that can mitigate diseases. It can also facilitate more rigorous monitoring of progress towards national and international health targets, such as the Sustainable Development Goals. For three decades, the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) has filled that need. A global network of collaborators contributed to the production of GBD 2021 by providing, reviewing, and analysing all available data. GBD estimates are updated routinely with additional data and refined analytical methods. GBD 2021 presents, for the first time, estimates of health loss due to the COVID-19 pandemic.MethodsThe GBD 2021 disease and injury burden analysis estimated years lived with disability (YLDs), years of life lost (YLLs), disability-adjusted life-years (DALYs), and healthy life expectancy (HALE) for 371 diseases and injuries using 100 983 data sources. Data were extracted from vital registration systems, verbal autopsies, censuses, household surveys, disease-specific registries, health service contact data, and other sources. YLDs were calculated by multiplying cause-age-sex-location-year-specific prevalence of sequelae by their respective disability weights, for each disease and injury. YLLs were calculated by multiplying cause-age-sex-location-year-specific deaths by the standard life expectancy at the age that death occurred. DALYs were calculated by summing YLDs and YLLs. HALE estimates were produced using YLDs per capita and age-specific mortality rates by location, age, sex, year, and cause. 95% uncertainty intervals (UIs) were generated for all final estimates as the 2·5th and 97·5th percentiles values of 500 draws. Uncertainty was propagated at each step of the estimation process. Counts and age-standardised rates were calculated globally, for seven super-regions, 21 regions, 204 countries and territories (including 21 countries with subnational locations), and 811 subnational locations, from 1990 to 2021. Here we report data for 2010 to 2021 to highlight trends in disease burden over the past decade and through the first 2 years of the COVID-19 pandemic.FindingsGlobal DALYs increased from 2·63 billion (95% UI 2·44–2·85) in 2010 to 2·88 billion (2·64–3·15) in 2021 for all causes combined. Much of this increase in the number of DALYs was due to population growth and ageing, as indicated by a decrease in global age-standardised all-cause DALY rates of 14·2% (95% UI 10·7–17·3) between 2010 and 2019. Notably, however, this decrease in rates reversed during the first 2 years of the COVID-19 pandemic, with increases in global age-standardised all-cause DALY rates since 2019 of 4·1% (1·8–6·3) in 2020 and 7·2% (4·7–10·0) in 2021. In 2021, COVID-19 was the leading cause of DALYs globally (212·0 million [198·0–234·5] DALYs), followed by ischaemic heart disease (188·3 million [176·7–198·3]), neonatal disorders (186·3 million [162·3–214·9]), and stroke (160·4 million [148·0–171·7]). However, notable health gains were seen among other leading communicable, maternal, neonatal, and nutritional (CMNN) diseases. Globally between 2010 and 2021, the age-standardised DALY rates for HIV/AIDS decreased by 47·8% (43·3–51·7) and for diarrhoeal diseases decreased by 47·0% (39·9–52·9). Non-communicable diseases contributed 1·73 billion (95% UI 1·54–1·94) DALYs in 2021, with a decrease in age-standardised DALY rates since 2010 of 6·4% (95% UI 3·5–9·5). Between 2010 and 2021, among the 25 leading Level 3 causes, age-standardised DALY rates increased most substantially for anxiety disorders (16·7% [14·0–19·8]), depressive disorders (16·4% [11·9–21·3]), and diabetes (14·0% [10·0–17·4]). Age-standardised DALY rates due to injuries decreased globally by 24·0% (20·7–27·2) between 2010 and 2021, although improvements were not uniform across locations, ages, and sexes. Globally, HALE at birth improved slightly, from 61·3 years (58·6–63·6) in 2010 to 62·2 years (59·4–64·7) in 2021. However, despite this overall increase, HALE decreased by 2·2% (1·6–2·9) between 2019 and 2021.InterpretationPutting the COVID-19 pandemic in the context of a mutually exclusive and collectively exhaustive list of causes of health loss is crucial to understanding its impact and ensuring that health funding and policy address needs at both local and global levels through cost-effective and evidence-based interventions. A global epidemiological transition remains underway. Our findings suggest that prioritising non-communicable disease prevention and treatment policies, as well as strengthening health systems, continues to be crucially important. The progress on reducing the burden of CMNN diseases must not stall; although global trends are improving, the burden of CMNN diseases remains unacceptably high. Evidence-based interventions will help save the lives of young children and mothers and improve the overall health and economic conditions of societies across the world. Governments and multilateral organisations should prioritise pandemic preparedness planning alongside efforts to reduce the burden of diseases and injuries that will strain resources in the coming decades.FundingBill &amp; Melinda Gates Foundation.<br/

    Low effective mass leading to high thermoelectric performance

    Get PDF
    High Seebeck coefficient by creating large density-of-states effective mass through either electronic structure modification or manipulating nanostructures is commonly considered as a route to advanced thermoelectrics. However, large density-of-state due to flat bands leads to large transport effective mass, which results in a simultaneous decrease of mobility. In fact, the net effect of such a high effective mass is a lower thermoelectric figure of merit, zT, when the carriers are predominantly scattered by phonons according to the deformation potential theory of Bardeen–Shockley. We demonstrate that the beneficial effect of light effective mass contributes to high zT in n-type thermoelectric PbTe, where doping and temperature can be used to tune the effective mass. This clear demonstration of the deformation potential theory to thermoelectrics shows that the guiding principle for band structure engineering should be low effective mass along the transport direction

    DIPL 2113 China\u27s Rise: Opportunities and Challenges

    Get PDF

    The Dynamical Relation Between Individual Needs and Group Performance:A Simulation of the Self-Organising Task Allocation Process

    Get PDF
    Team performance can be considered a macro-level outcome that depends on three sets of micro-level factors: individual workers contributing to the task, team composition, and task characteristics. For a number of reasons, the complex dynamics between individuals in the task allocation process are difficult to sys-tematically explore in traditional experimental settings: the motivational dynamics, the complex dynamics of task allocation processes, and the lack of experimental control over team composition imply an ABM-approach being more feasible. For this reason, we propose an updated version of the WORKMATE model that has been developed to explore the dynamics of team performance. In doing so, we added Deci and Ryan’s SDT theory, stating that people are motivated by three psychological needs, competence, autonomy, and belonging. This paper is aimed at explaining the architecture of the model, and some first simulation runs as proof of concept. The experimental results show that: 1) an appropriate motivation threshold will help the team have the lowest performance time. 2) the time needed for the task allocation process is related to the importance of different motivations. 3) highly satisfied teams are more likely composed of members valuing autonomy.</p

    The Dynamical Relation Between Individual Needs and Group Performance:A Simulation of the Self-Organising Task Allocation Process

    Get PDF
    Team performance can be considered a macro-level outcome that depends on three sets of micro-level factors: individual workers contributing to the task, team composition, and task characteristics. For a number of reasons, the complex dynamics between individuals in the task allocation process are difficult to sys-tematically explore in traditional experimental settings: the motivational dynamics, the complex dynamics of task allocation processes, and the lack of experimental control over team composition imply an ABM-approach being more feasible. For this reason, we propose an updated version of the WORKMATE model that has been developed to explore the dynamics of team performance. In doing so, we added Deci and Ryan’s SDT theory, stating that people are motivated by three psychological needs, competence, autonomy, and belonging. This paper is aimed at explaining the architecture of the model, and some first simulation runs as proof of concept. The experimental results show that: 1) an appropriate motivation threshold will help the team have the lowest performance time. 2) the time needed for the task allocation process is related to the importance of different motivations. 3) highly satisfied teams are more likely composed of members valuing autonomy.</p

    Heavily Doped PBSE with High Thermoelectric Performance

    Get PDF
    The present invention discloses heavily doped PbSe with high thermoelectric performance. Thermoelectric property measurements disclosed herein indicated that PbSe is high zT material for mid-to-high temperature thermoelectric applications. At 850 K a peak zT (is) greater than 1.3 was observed when n(sub H) approximately 1.0 X 10(exp 20) cm(exp -3). The present invention also discloses that a number of strategies used to improve zT of PbTe, such as alloying with other elements, nanostructuring and band modification may also be used to further improve zT in PbSe

    The Dynamical Relation Between Individual Needs and Group Performance:A Simulation of the Self-Organising Task Allocation Process

    Get PDF
    Team performance can be considered a macro-level outcome that depends on three sets of micro-level factors: individual workers contributing to the task, team composition, and task characteristics. For a number of reasons, the complex dynamics between individuals in the task allocation process are difficult to sys-tematically explore in traditional experimental settings: the motivational dynamics, the complex dynamics of task allocation processes, and the lack of experimental control over team composition imply an ABM-approach being more feasible. For this reason, we propose an updated version of the WORKMATE model that has been developed to explore the dynamics of team performance. In doing so, we added Deci and Ryan’s SDT theory, stating that people are motivated by three psychological needs, competence, autonomy, and belonging. This paper is aimed at explaining the architecture of the model, and some first simulation runs as proof of concept. The experimental results show that: 1) an appropriate motivation threshold will help the team have the lowest performance time. 2) the time needed for the task allocation process is related to the importance of different motivations. 3) highly satisfied teams are more likely composed of members valuing autonomy.</p

    The Dynamical Relation Between Individual Needs and Group Performance:A Simulation of the Self-Organising Task Allocation Process

    Get PDF
    Team performance can be considered a macro-level outcome that depends on three sets of micro-level factors: individual workers contributing to the task, team composition, and task characteristics. For a number of reasons, the complex dynamics between individuals in the task allocation process are difficult to sys-tematically explore in traditional experimental settings: the motivational dynamics, the complex dynamics of task allocation processes, and the lack of experimental control over team composition imply an ABM-approach being more feasible. For this reason, we propose an updated version of the WORKMATE model that has been developed to explore the dynamics of team performance. In doing so, we added Deci and Ryan’s SDT theory, stating that people are motivated by three psychological needs, competence, autonomy, and belonging. This paper is aimed at explaining the architecture of the model, and some first simulation runs as proof of concept. The experimental results show that: 1) an appropriate motivation threshold will help the team have the lowest performance time. 2) the time needed for the task allocation process is related to the importance of different motivations. 3) highly satisfied teams are more likely composed of members valuing autonomy.</p

    The Dynamical Relation Between Individual Needs and Group Performance:A Simulation of the Self-Organising Task Allocation Process

    Get PDF
    Team performance can be considered a macro-level outcome that depends on three sets of micro-level factors: individual workers contributing to the task, team composition, and task characteristics. For a number of reasons, the complex dynamics between individuals in the task allocation process are difficult to sys-tematically explore in traditional experimental settings: the motivational dynamics, the complex dynamics of task allocation processes, and the lack of experimental control over team composition imply an ABM-approach being more feasible. For this reason, we propose an updated version of the WORKMATE model that has been developed to explore the dynamics of team performance. In doing so, we added Deci and Ryan’s SDT theory, stating that people are motivated by three psychological needs, competence, autonomy, and belonging. This paper is aimed at explaining the architecture of the model, and some first simulation runs as proof of concept. The experimental results show that: 1) an appropriate motivation threshold will help the team have the lowest performance time. 2) the time needed for the task allocation process is related to the importance of different motivations. 3) highly satisfied teams are more likely composed of members valuing autonomy.</p
    • …
    corecore