55 research outputs found

    On the Universal Approximation Property and Equivalence of Stochastic Computing-based Neural Networks and Binary Neural Networks

    Full text link
    Large-scale deep neural networks are both memory intensive and computation-intensive, thereby posing stringent requirements on the computing platforms. Hardware accelerations of deep neural networks have been extensively investigated in both industry and academia. Specific forms of binary neural networks (BNNs) and stochastic computing based neural networks (SCNNs) are particularly appealing to hardware implementations since they can be implemented almost entirely with binary operations. Despite the obvious advantages in hardware implementation, these approximate computing techniques are questioned by researchers in terms of accuracy and universal applicability. Also it is important to understand the relative pros and cons of SCNNs and BNNs in theory and in actual hardware implementations. In order to address these concerns, in this paper we prove that the "ideal" SCNNs and BNNs satisfy the universal approximation property with probability 1 (due to the stochastic behavior). The proof is conducted by first proving the property for SCNNs from the strong law of large numbers, and then using SCNNs as a "bridge" to prove for BNNs. Based on the universal approximation property, we further prove that SCNNs and BNNs exhibit the same energy complexity. In other words, they have the same asymptotic energy consumption with the growing of network size. We also provide a detailed analysis of the pros and cons of SCNNs and BNNs for hardware implementations and conclude that SCNNs are more suitable for hardware.Comment: 9 pages, 3 figure

    Removal of Methyl Orange from Aqueous Solution by Calcium Alginate/Multi-walled Carbon Nanotubes Composite Fibers

    Get PDF
    AbstractAdsorbent of calcium alginate/multi-walled carbon nanotubes (CA/MWCNTs) composite fiber was prepared by wet spinning. Adsorptions of methyl orange (MO) anionic dyes onto CA/MWCNTs composite fiber were investigated with respect to MWCNTs content, initial dye concentration and pH values. Results illustrated that introduction of MWCNTs could obviously increase the adsorption capacity (qe) of MO onto CA/MWCNTs composite fibers. The equilibrium adsorption data were analyzed using two widely applied isotherms: Langmuir and Freundlich. The results showed that Langmuir isotherm fitted the experimental results well

    You Need Multiple Exiting: Dynamic Early Exiting for Accelerating Unified Vision Language Model

    Full text link
    Large-scale Transformer models bring significant improvements for various downstream vision language tasks with a unified architecture. The performance improvements come with increasing model size, resulting in slow inference speed and increased cost for severing. While some certain predictions benefit from the full complexity of the large-scale model, not all of inputs need the same amount of computation to conduct, potentially leading to computation resource waste. To handle this challenge, early exiting is proposed to adaptively allocate computational power in term of input complexity to improve inference efficiency. The existing early exiting strategies usually adopt output confidence based on intermediate layers as a proxy of input complexity to incur the decision of skipping following layers. However, such strategies cannot apply to encoder in the widely-used unified architecture with both encoder and decoder due to difficulty of output confidence estimation in the encoder. It is suboptimal in term of saving computation power to ignore the early exiting in encoder component. To handle this challenge, we propose a novel early exiting strategy for unified visual language models, which allows dynamically skip the layers in encoder and decoder simultaneously in term of input layer-wise similarities with multiple times of early exiting, namely \textbf{MuE}. By decomposing the image and text modalities in the encoder, MuE is flexible and can skip different layers in term of modalities, advancing the inference efficiency while minimizing performance drop. Experiments on the SNLI-VE and MS COCO datasets show that the proposed approach MuE can reduce expected inference time by up to 50\% and 40\% while maintaining 99\% and 96\% performance respectively
    • …
    corecore