24 research outputs found

    VLN-PETL: Parameter-Efficient Transfer Learning for Vision-and-Language Navigation

    Full text link
    The performance of the Vision-and-Language Navigation~(VLN) tasks has witnessed rapid progress recently thanks to the use of large pre-trained vision-and-language models. However, full fine-tuning the pre-trained model for every downstream VLN task is becoming costly due to the considerable model size. Recent research hotspot of Parameter-Efficient Transfer Learning (PETL) shows great potential in efficiently tuning large pre-trained models for the common CV and NLP tasks, which exploits the most of the representation knowledge implied in the pre-trained model while only tunes a minimal set of parameters. However, simply utilizing existing PETL methods for the more challenging VLN tasks may bring non-trivial degeneration to the performance. Therefore, we present the first study to explore PETL methods for VLN tasks and propose a VLN-specific PETL method named VLN-PETL. Specifically, we design two PETL modules: Historical Interaction Booster (HIB) and Cross-modal Interaction Booster (CIB). Then we combine these two modules with several existing PETL methods as the integrated VLN-PETL. Extensive experimental results on four mainstream VLN tasks (R2R, REVERIE, NDH, RxR) demonstrate the effectiveness of our proposed VLN-PETL, where VLN-PETL achieves comparable or even better performance to full fine-tuning and outperforms other PETL methods with promising margins.Comment: Accepted by ICCV 202

    Referring Expression Comprehension: A Survey of Methods and Datasets

    Full text link
    Referring expression comprehension (REC) aims to localize a target object in an image described by a referring expression phrased in natural language. Different from the object detection task that queried object labels have been pre-defined, the REC problem only can observe the queries during the test. It thus more challenging than a conventional computer vision problem. This task has attracted a lot of attention from both computer vision and natural language processing community, and several lines of work have been proposed, from CNN-RNN model, modular network to complex graph-based model. In this survey, we first examine the state of the art by comparing modern approaches to the problem. We classify methods by their mechanism to encode the visual and textual modalities. In particular, we examine the common approach of joint embedding images and expressions to a common feature space. We also discuss modular architectures and graph-based models that interface with structured graph representation. In the second part of this survey, we review the datasets available for training and evaluating REC systems. We then group results according to the datasets, backbone models, settings so that they can be fairly compared. Finally, we discuss promising future directions for the field, in particular the compositional referring expression comprehension that requires longer reasoning chain to address.Comment: Accepted to IEEE TM

    March in Chat: Interactive Prompting for Remote Embodied Referring Expression

    Full text link
    Many Vision-and-Language Navigation (VLN) tasks have been proposed in recent years, from room-based to object-based and indoor to outdoor. The REVERIE (Remote Embodied Referring Expression) is interesting since it only provides high-level instructions to the agent, which are closer to human commands in practice. Nevertheless, this poses more challenges than other VLN tasks since it requires agents to infer a navigation plan only based on a short instruction. Large Language Models (LLMs) show great potential in robot action planning by providing proper prompts. Still, this strategy has not been explored under the REVERIE settings. There are several new challenges. For example, the LLM should be environment-aware so that the navigation plan can be adjusted based on the current visual observation. Moreover, the LLM planned actions should be adaptable to the much larger and more complex REVERIE environment. This paper proposes a March-in-Chat (MiC) model that can talk to the LLM on the fly and plan dynamically based on a newly proposed Room-and-Object Aware Scene Perceiver (ROASP). Our MiC model outperforms the previous state-of-the-art by large margins by SPL and RGSPL metrics on the REVERIE benchmark.Comment: Accepted by ICCV 202

    Improving Online Source-free Domain Adaptation for Object Detection by Unsupervised Data Acquisition

    Full text link
    Effective object detection in mobile robots is challenged by deployment in diverse and unfamiliar environments. Online Source-Free Domain Adaptation (O-SFDA) offers real-time model adaptation using a stream of unlabeled data from a target domain. However, not all captured frames in mobile robotics contain information that is beneficial for adaptation, particularly when there is a strong domain shift. This paper introduces a novel approach to enhance O-SFDA for adaptive object detection in mobile robots via unsupervised data acquisition. Our methodology prioritizes the most informative unlabeled samples for inclusion in the online training process. Empirical evaluation on a real-world dataset reveals that our method outperforms existing state-of-the-art O-SFDA techniques, demonstrating the viability of unsupervised data acquisition for improving adaptive object detection in mobile robots

    Urinary ATP may be a biomarker of interstitial cystitis/bladder pain syndrome and its severity

    Get PDF
    Urinary tract cells respond to bladder distension by releasing adenosine triphosphate (ATP). Patients with interstitial cystitis/bladder pain syndrome (IC/BPS) exhibit elevated urinary ATP levels compared to asymptomatic controls. This study aimed to evaluate the potential of urinary ATP as a non-invasive biomarker for IC/BPS and its correlation with symptom severity. We included 56 patients diagnosed with IC/BPS and 50 asymptomatic controls. Urine samples were collected from both groups. Urinary ATP levels were quantified using the luciferin-luciferase bioluminescence method. The severity of IC/BPS symptoms was assessed using the visual analogue score (VAS), Interstitial Cystitis Symptom Index (ICSI), and Interstitial Cystitis Problem Index (ICPI) from the O'Leary-Sant score. We specifically examined the correlation between symptom scores and urinary ATP levels in IC/BPS patients. Urinary ATP levels were significantly higher in IC/BPS patients compared to the control group (P < 0.0001). There was a significant positive correlation between urinary ATP concentrations and VAS, ICPI, and ICSI scores among IC/BPS patients (P < 0.0001). The threshold value for ATP concentration was set at 56.6 nM, with an area under the receiver operating characteristic (ROC) curve of 0.811 (95% CI 0.730 - 0.892). Our findings indicate that IC/BPS patients excrete elevated amounts of ATP in their urine. This suggests that urinary ATP might serve as a non-invasive biomarker for IC/BPS, with a predictive potential in terms of symptom severity

    Caspase 8 and maspin are downregulated in breast cancer cells due to CpG site promoter methylation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Epigenetic changes associated with promoter DNA methylation results in silencing of several tumor suppressor genes that lead to increased risk for tumor formation and for progression of the cancer.</p> <p>Methods</p> <p>Methylation specific PCR (MSP) and bisulfite sequencing were used for determination of proapoptotic gene Caspase 8 (CASP8) and the tumor suppressor gene maspin promoter methylation in four breast cancer and two non-tumorigenic breast cell lines. Involvement of histone H3 methylation in those cell lines were examined by CHIP assay.</p> <p>Results</p> <p>The CpG sites in the promoter region of CASP8 and maspin were methylated in all four breast cancer cell lines but not in two non-tumorigenic breast cell lines. Demethylation agent 5-aza-2'-deoxycytidine (5-aza-dc) selectively inhibits DNA methyltransferases, DNMT3a and DNMT3b, and restored CASP8 and maspin gene expression in breast cancer cells. 5-aza-dc also reduced histone H3k9me2 occupancy on CASP8 promoter in SKBR3cells, but not in MCF-7 cells. Combination of histone deacetylase inhibitor Trichostatin A (TSA) and 5-aza-dc significant decrease in nuclear expression of Di-methyl histone H3-Lys27 and slight increase in acetyl histone H3-Lys9 in MCF-7 cells. CASP8 mRNA and protein level in MCF-7 cells were increased by the 5-aza-dc in combination with TSA. Data from our study also demonstrated that treatment with 5-FU caused a significant increase in unmethylated CASP8 and in CASP8 mRNA in all 3 cancer lines.</p> <p>Conclusions</p> <p>CASP8 and maspin expression were reduced in breast cancer cells due to promoter methylation. Selective application of demethylating agents could offer novel therapeutic opportunities in breast cancer.</p

    A83-01 inhibits TGF-β-induced upregulation of Wnt3 and epithelial to mesenchymal transition in HER2-overexpressing breast cancer cells

    Get PDF
    PurposeThe aim of this study is to investigate the mechanisms of interactions between TGF-β and Wnt/β-catenin pathways that induce and regulate EMT and promote breast cancer cells to become resistant to treatment.MethodsThe effect of TGF-β on Wnt/β-catenin signaling pathway was examined by using a human Wnt/β-catenin-regulated cDNA plate array and western blot analysis. The interaction of Twist at promoter of Wnt3 was examined by chromatin immunoprecipitation (ChIP) assay. Secreted Wnt3 level was determined by ELISA assay.ResultsHER2-overexpressing breast cancer cells treated with TGF-β have a reduced response to trastuzumab and exhibited EMT-like phenotype. The TGF-β-induced EMT in HER2-cells was concordant with upregulation of Wnt3 and β-catenin pathways. The TGF-β-induced induction of Wnt3 during EMT was found to be Smad3-dependent. ChIP analysis identified occupancy of Twist at promoter region of Wnt3. Knock-down of Twist by shRNA confirmed the significance of Twist in response to TGF-β regulating Wnt3 during EMT. Subsequently, TGF-β-induced matrix metalloproteinases, MMP1, MMP7, MMP9, MMP26, Vascular endothelial growth factors (VEGF), and activation of Wnt/β-catenin signaling were repressed by the shRNA treatment. TGF-βR1 ALK5 kinase inhibitor, A83-01 can effectively prevent the TGF-β-induced Twist and Wnt3. Co-treating A83-01 and trastuzumab inhibited TGF-β-induced cell invasion significantly in both trastuzumab responsive and resistant cells.ConclusionsOur data demonstrated an important interdependence between TGF-β and Wnt/β-catenin pathways inducing EMT in HER2-overexpressing breast cancer cells. Twist served as a linkage between the two pathways during TGF-β-induced EMT. A83-01 could inhibit the TGF-β-initiated pathway interactions and enhance HER2-cells response to trastuzumab treatment

    Emerging roles of the TRPV4 channel in bladder physiology and dysfunction

    No full text
    The transient receptor potential vanilloid type 4, TRPV4, is a polymodal cation channel which can be activated by diverse stimuli including mechanical, thermal and chemical cues. In the urinary bladder, TRPV4 is not only abundantly expressed in the urothelium but may also be localized in subepithelium, detrusor smooth muscles and afferent neurons. Emerging evidence indicates that the TRPV4 channel plays a sensory role in the uroepithelium, where it may regulate the release of sensory mediators such as ATP, which in turn modulates afferent nerve activity in response to bladder filling during the urination cycle. TRPV4 may also directly regulate detrusor contractility and the urothelial barrier function. Altered TRPV4 expression has been detected in various pathological bladder conditions. As such, TRPV4 may be a promising therapeutic target for bladder dysfunctions

    Interactive Effects of Ecological Land Agglomeration and Habitat Quality on Soil Erosion in the Jinsha River Basin, China

    No full text
    Soil erosion is a significant global environmental issue and a crucial aspect of global change. Exploring the interactive effect of ecological land agglomeration and habitat quality on soil erosion can effectively guide the positive intervention of ecological restoration activities. The study calculated the comprehensive ecological land agglomeration with Fragstats 4.2 and the habitat quality with InVEST 3.7.0 for the years 2000, 2010, and 2020 within the Jinsha River Basin in Yunnan, China. In addition, the RUSLE model was utilized to calculate soil erosion in the study area. The Geographic and Temporally Weighted Regression (GTWR) model was employed to obtain the regression coefficients and their spatial and temporal variations. The findings of this study revealed the following: (1) During the study period, there was an overall 29.06% reduction in the soil erosion modulus with an annual rate of 1.70% reduction on average, accompanied by an increase in both the comprehensive ecological land agglomeration and habitat quality. Soil erosion was more severe in the eastern regions than in the western ones and the other two indicators were higher in the northeast and southwest. (2) The GTWR results demonstrate that comprehensive ecological land agglomeration and habitat quality were negatively correlated with soil erosion, with results of −0.1383 and 0.0021, respectively. However, in northwest regions, there was a significant positive correlation between habitat quality and soil erosion. (3) The interaction term between comprehensive ecological land agglomeration and habitat quality was significantly negatively correlated with soil erosion with a result of −0.0299, and the interaction coefficients have regional variations. This study offers valuable guidance for land-use development and soil and water conservation in the Jinsha River Basin

    Experimental study on integrated desulfurization and denitrification of low-temperature flue gas by oxidation method

    No full text
    Abstract In this paper, TiO2 catalysts doped with different Fe contents (Fe-TiO2 catalysts) were prepared by coprecipitation method and the Fe loading capacity was optimized, and then the integrated pollutant removal experiment was conducted, in which TiO2 doped with Fe as catalyst and H2O2 as oxidant. The results show that under the condition of constant H2O2/(SO2 + NO) molar ratio, low concentration of SO2 can promote the oxidation and removal efficiency of NO, while high concentration of SO2 can inhibit the removal of NO x . The pollutant removal efficiency is proportional to the amount of catalyst, liquid–gas ratio and pH value of the absorbing solution. The optimal experimental conditions are H2O2/(SO2 + NO) molar ratio 1.5, space velocity ratio 10,000 h−1, H2O2 mass fraction 10 wt%, liquid gas ratio 10, pH 10. Correspondingly, NO oxidation efficiency reaches 88%, NO x removal efficiency 85.6%, and SO2 is almost completely removed. The microstructure of the catalyst before and after the reaction was characterized, and the crystal structure did not change obviously. However, with the deepening of the reaction, the specific surface area of the catalyst decreases, and the catalytic effect decreases slightly
    corecore