1,196 research outputs found
The role of atrial natriuretic peptide to attenuate inflammation in a mouse skin wound and individually perfused rat mesenteric microvessels.
We tested the hypothesis that the anti-inflammatory actions of atrial natriuretic peptide (ANP) result from the modulation of leukocyte adhesion to inflamed endothelium and not solely ANP ligation of endothelial receptors to stabilize endothelial barrier function. We measured vascular permeability to albumin and accumulation of fluorescent neutrophils in a full-thickness skin wound on the flank of LysM-EGFP mice 24Â h after formation. Vascular permeability in individually perfused rat mesenteric microvessels was also measured after leukocytes were washed out of the vessel lumen. Thrombin increased albumin permeability and increased the accumulation of neutrophils. The thrombin-induced inflammatory responses were attenuated by pretreating the wound with ANP (30Â min). During pretreatment ANP did not lower permeability, but transiently increased baseline albumin permeability concomitant with the reduction in neutrophil accumulation. ANP did not attenuate acute increases in permeability to histamine and bradykinin in individually perfused rat microvessels. The hypothesis that anti-inflammatory actions of ANP depend solely on endothelial responses that stabilize the endothelial barrier is not supported by our results in either individually perfused microvessels in the absence of circulating leukocytes or the more chronic skin wound model. Our results conform to the alternate hypothesis that ANP modulates the interaction of leukocytes with the inflamed microvascular wall of the 24Â h wound. Taken together with our previous observations that ANP reduces deformability of neutrophils and their strength of attachment, rolling, and transvascular migration, these observations provide the basis for additional investigations of ANP as an anti-inflammatory agent to modulate leukocyte-endothelial cell interactions
Calculation of Carrier Doping-Induced Half-Metallicity, and Transformation of Easy Axis in Two-Dimensional MSi2N4 (M = Cr, Mn, Fe, and Co) Monolayers
We study the stability, electrical properties, and magnetic properties of
MSi2N4 (M = Cr, Mn, Fe, and Co) monolayers based on the density functional
theory.Comment: 10 figure
UMIFormer: Mining the Correlations between Similar Tokens for Multi-View 3D Reconstruction
In recent years, many video tasks have achieved breakthroughs by utilizing
the vision transformer and establishing spatial-temporal decoupling for feature
extraction. Although multi-view 3D reconstruction also faces multiple images as
input, it cannot immediately inherit their success due to completely ambiguous
associations between unstructured views. There is not usable prior
relationship, which is similar to the temporally-coherence property in a video.
To solve this problem, we propose a novel transformer network for Unstructured
Multiple Images (UMIFormer). It exploits transformer blocks for decoupled
intra-view encoding and designed blocks for token rectification that mine the
correlation between similar tokens from different views to achieve decoupled
inter-view encoding. Afterward, all tokens acquired from various branches are
compressed into a fixed-size compact representation while preserving rich
information for reconstruction by leveraging the similarities between tokens.
We empirically demonstrate on ShapeNet and confirm that our decoupled learning
method is adaptable for unstructured multiple images. Meanwhile, the
experiments also verify our model outperforms existing SOTA methods by a large
margin. Code will be available at https://github.com/GaryZhu1996/UMIFormer.Comment: Accepted by ICCV 202
The Three Dimensional Quantitative Structure Activity Relationships (3D-QSAR) and Docking Studies of Curcumin Derivatives as Androgen Receptor Antagonists
Androgen receptor antagonists have been proved to be effective anti-prostate cancer agents. 3D-QSAR and Molecular docking methods were performed on curcumin derivatives as androgen receptor antagonists. The bioactive conformation was explored by docking the potent compound 29 into the binding site of AR. The constructed Comparative Molecular Field Analysis (CoMFA) and Comparative Similarity Indices Analysis (CoMSIA) models produced statistically significant results with the cross-validated correlation coefficients q2 of 0.658 and 0.567, non-cross-validated correlation coefficients r2 of 0.988 and 0.978, and predicted correction coefficients r2pred of 0.715 and 0.793, respectively. These results ensure the CoMFA and CoMSIA models as a tool to guide the design of novel potent AR antagonists. A set of 30 new analogs were proposed by utilizing the results revealed in the present study, and were predicted with potential activities in the developed models
Replication stress and chromatin context link ATM activation to a role in DNA replication
ATM-mediated signaling in response to DNA damage is a barrier to tumorigenesis. Here we asked whether replication stress could also contribute to ATM signaling. We demonstrate that, in the absence of DNA damage, ATM responds to replication stress in a hypoxia-induced heterochromatin-like context. In certain hypoxic conditions, replication stress occurs in the absence of detectable DNA damage. Hypoxia also induces H3K9me3, a histone modification associated with gene repression and heterochromatin. Hypoxia-induced replication stress together with increased H3K9me3 leads to ATM activation. Importantly, ATM prevents the accumulation of DNA damage in hypoxia. Most significantly, we describe a stress-specific role for ATM in maintaining DNA replication rates in a background of increased H3K9me3. Furthermore, the ATM-mediated response to oncogene-induced replication stress is enhanced in hypoxic conditions. Together, these data indicate that hypoxia plays a critical role in the activation of the DNA damage response, therefore contributing to this barrier to tumorigenesis
- …