533 research outputs found

    Gas Sensing Properties of Single Conducting Polymer Nanowires and the Effect of Temperature

    Get PDF
    We measured the electronic properties and gas sensing responses of template-grown poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) (PEDOT/PSS)-based nanowires. The nanowires have a "striped" structure (gold-PEDOT/PSS-gold), typically 8um long (1um-6um-1um for each section, respectively) and 220 nm in diameter. Single-nanowire devices were contacted by pre-fabricated gold electrodes using dielectrophoretic assembly. A polymer conductivity of 11.5 +/- 0.7 S/cm and a contact resistance of 27.6 +/- 4 kOhm were inferred from measurements of nanowires of varying length and diameter. The nanowire sensors detect a variety of odors, with rapid response and recovery (seconds). The response (R-R0)/R0 varies as a power law with analyte concentration.Comment: 4 figures 8 pages, add 2 reference

    Antidiabetes and Anti-obesity Activity of Lagerstroemia speciosa

    Get PDF
    The leaves of Lagerstroemia speciosa (Lythraceae), a Southeast Asian tree more commonly known as banaba, have been traditionally consumed in various forms by Philippinos for treatment of diabetes and kidney related diseases. In the 1990s, the popularity of this herbal medicine began to attract the attention of scientists worldwide. Since then, researchers have conducted numerous in vitro and in vivo studies that consistently confirmed the antidiabetic activity of banaba. Scientists have identified different components of banaba to be responsible for its activity. Using tumor cells as a cell model, corosolic acid was isolated from the methanol extract of banaba and shown to be an active compound. More recently, a different cell model and the focus on the water soluble fraction of the extract led to the discovery of other compounds. The ellagitannin Lagerstroemin was identified as an effective component of the banaba extract responsible for the activity. In a different approach, using 3T3-L1 adipocytes as a cell model and a glucose uptake assay as the functional screening method, Chen et al. showed that the banaba water extract exhibited an insulin-like glucose transport inducing activity. Coupling HPLC fractionation with a glucose uptake assay, gallotannins were identified in the banaba extract as components responsible for the activity, not corosolic acid. Penta-O-galloyl-glucopyranose (PGG) was identified as the most potent gallotannin. A comparison of published data with results obtained for PGG indicates that PGG has a significantly higher glucose transport stimulatory activity than Lagerstroemin. Chen et al. have also shown that PGG exhibits anti-adipogenic properties in addition to stimulating the glucose uptake in adipocytes. The combination of glucose uptake and anti-adipogenesis activity is not found in the current insulin mimetic drugs and may indicate a great therapeutic potential of PGG

    Polysaccharides from the Chinese medicinal herb Achyranthes bidentata enhance anti-malarial immunity during Plasmodium yoelii 17XL infection in mice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Clinical immunity to malaria in human populations is developed after repeated exposure to malaria. Regulation and balance of host immune responses may lead to optimal immunity against malaria parasite infection. Polysaccharides (ABPS) derived from the Chinese herb ox knee <it>Achyranthes bidentata </it>possess immuno-modulatory functions. The aim of this study is to use the rodent malaria model <it>Plasmodium yoelii </it>17XL (<it>P. y</it>17XL) to examine whether pretreatment with ABPS will modulate host immunity against malaria infection and improve the outcome of the disease.</p> <p>Methods</p> <p>To determine whether ABPS could modulate immunity against malaria, mice were pretreated with ABPS prior to blood-stage infection by <it>P. y</it>17XL. Host survival and parasitaemia were monitored daily. The effect of pretreatment on host immune responses was studied through the quantitation of cytokines, dendritic cell populations, and natural regulatory T cells (Treg).</p> <p>Results</p> <p>Pretreatment with ABPS prior to infection significantly extended the survival time of mice after <it>P. y</it>17XL infection. At three and five days post-infection, ABPS pretreated mice developed stronger Th1 immune responses against malaria infection with the number of F4/80<sup>+</sup>CD36<sup>+ </sup>macrophages and levels of IFN-γ, TNF-α and nitric oxide being significantly higher than in the control group. More importantly, ABPS-treated mice developed more myeloid (CD11c<sup>+</sup>CD11b<sup>+</sup>) and plasmacytoid dendritic cells (CD11c<sup>+</sup>CD45R<sup>+</sup>/B220<sup>+</sup>) than control mice. ABPS pretreatment also resulted in modulated expression of MHC-II, CD86, and especially Toll-like receptor 9 by CD11c<sup>+ </sup>dendritic cells. In comparison, pretreatment with ABPS did not alter the number of natural Treg or the production of the anti-inflammatory cytokine IL-10.</p> <p>Conclusion</p> <p>Pretreatment with the immuno-modulatory ABPS selectively enhanced Th1 immune responses to control the proliferation of malaria parasites, and prolonged the survival of mice during subsequent malaria infection.</p

    Active Interfacial Shear Microrheology of Aging Protein Films

    Get PDF
    This is the published version. Copyright 2010 The American Physical SocietyThe magnetically driven rotation of 300 nm diameter rods shows the surface viscosity of albumin at an air-water interface increases from 10−9 to 10−5  N s/m over 2 h while the surface pressure saturates in minutes. The increase in surface viscosity is not accompanied by a corresponding increase in elasticity, suggesting that the protein film anneals with time, resulting in a more densely packed film leading to increased resistance to shear. The nanometer dimensions of the rods provide the same sensitivity as passive microrheology with an improved ability to measure more viscous films

    Probability weighted four-point arc imaging algorithm for time-reversed lamb wave damage detection

    Get PDF
    Damage imaging based on scattering signals of ultrasonic Lamb waves in plate structure is considered as one of the most effective ways for structural health monitoring area. To improve location accuracy and reduce the impact of artifacts, a probability weighted four-point arc imaging algorithm for time reversal Lamb wave damage detection is proposed in this paper. By taking the defect as a secondary wave source, the four-point arc positioning method is used to calculate the propagation time of the signal from transducer to defect. And the amplitude of damage signal corresponding to the time of flight is used for imaging. In order to eliminate the artifacts, a damage probability weighting is combined with four-point circular arc imaging algorithm. The effectiveness of the proposed method is experimentally verified in aluminum plate. Experimental results indicate that damage location accuracy and imaging quality has been improved in both single-flaw and double-flaw samples compared with conventional delay-and-sum method

    A modified damage index probability imaging algorithm based on delay-and-sum imaging for synthesizing time-reversed Lamb waves

    Get PDF
    Imaging for damage in plate structure by Lamb waves is one of the most effective methods in the field of structural health monitoring. In order to improve the accuracy of damage localization, a novel method is proposed to modify damage exponent probability imaging algorithm based on delay-and-sum imaging by using time reversal Lamb waves. A new probability distribution function is introduced to improve the damage index probability method and is combined with delay-and-sum method for damage localization. Experimental results on aluminum plate show that the hybrid algorithm achieves better accuracy of damage location and imaging quality than the conventional delay-and-sum method

    Dielectrophoretically Assembled Polymer Nanowires for Gas Sensing

    Get PDF
    We measured the electronic properties and gas sensing response of nanowires containing segments of poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) (PEDOT/PSS) that were synthesized using anodic aluminum oxide (AAO) membranes. The nanowires have a "striped" structure of gold-PEDOT/PSS-gold and are typically 8 um long (1 um-6 um-1 um for each section, respectively) and 220 nm in diameter. Dielectrophoretic assembly was used to position single nanowires on pre-fabricated gold electrodes. A polymer conductivity of 11.5 +/- 0.7 S/cm and a contact resistance of 27.6 +/- 4 kOhm were inferred from resistance measurements of nanowires of varying length and diameter. When used as gas sensors, the wires showed a resistance change of 10.5%, 9%, and 4% at the saturation vapor pressure of acetone, methanol and ethanol, respectively. Sensor response and recovery were rapid (seconds) with excellent reproducibility in time and across devices. "Striped" template-grown nanowires are thus intriguing candidates for use in electronic nose vapor sensing systems.Comment: 18 pages 6 figure
    • …
    corecore