150 research outputs found

    Controlled polarization rotation of an optical field in multi-Zeeman-sublevel atoms

    Get PDF
    We investigate, both theoretically and experimentally, the phenomenon of polarization rotation of a weak, linearly-polarized optical (probe) field in an atomic system with multiple three-level electromagnetically induced transparency (EIT) sub-systems. The polarization rotation angle can be controlled by a circularly-polarized coupling beam, which breaks the symmetry in number of EIT subsystems seen by the left- and right-circularly-polarized components of the weak probe beam. A large polarization rotation angle (up to 45 degrees) has been achieved with a coupling beam power of only 15 mW. Detailed theoretical analyses including different transition probabilities in different transitions and Doppler-broadening are presented and the results are in good agreements with the experimentally measured results.Comment: 28pages, 12figure

    mmBody Benchmark: 3D Body Reconstruction Dataset and Analysis for Millimeter Wave Radar

    Full text link
    Millimeter Wave (mmWave) Radar is gaining popularity as it can work in adverse environments like smoke, rain, snow, poor lighting, etc. Prior work has explored the possibility of reconstructing 3D skeletons or meshes from the noisy and sparse mmWave Radar signals. However, it is unclear how accurately we can reconstruct the 3D body from the mmWave signals across scenes and how it performs compared with cameras, which are important aspects needed to be considered when either using mmWave radars alone or combining them with cameras. To answer these questions, an automatic 3D body annotation system is first designed and built up with multiple sensors to collect a large-scale dataset. The dataset consists of synchronized and calibrated mmWave radar point clouds and RGB(D) images in different scenes and skeleton/mesh annotations for humans in the scenes. With this dataset, we train state-of-the-art methods with inputs from different sensors and test them in various scenarios. The results demonstrate that 1) despite the noise and sparsity of the generated point clouds, the mmWave radar can achieve better reconstruction accuracy than the RGB camera but worse than the depth camera; 2) the reconstruction from the mmWave radar is affected by adverse weather conditions moderately while the RGB(D) camera is severely affected. Further, analysis of the dataset and the results shadow insights on improving the reconstruction from the mmWave radar and the combination of signals from different sensors.Comment: ACM Multimedia 2022, Project Page: https://chen3110.github.io/mmbody/index.htm

    Multi-dark-state resonances in cold multi-Zeeman-sublevel atoms

    Get PDF
    We present our experimental and theoretical studies of multi-dark-state resonances (MDSRs) generated in a unique cold rubidium atomic system with only one coupling laser beam. Such MDSRs are caused by different transition strengths of the strong coupling beam connecting different Zeeman sublevels. Controlling the transparency windows in such electromagnetically induced transparency system can have potential applications in multi-wavelength optical communication and quantum information processing.Comment: 11pages, 4figure

    Spatial identification of conservation priority areas for urban ecological land: An approach based on water ecosystem services

    Get PDF
    How to effectively prevent land degradation and ecosystem deterioration in the process of urbanization has been the focus of land degradation researches in urban areas. Urban ecological land can be defined as the natural base on which a city relies to ecologically survive. It closely links the social economy with the natural eco‐environment, providing an important integrated approach to resolve the contradiction between urban expansion and natural ecosystems conservation in the process of urbanization. The research question addressed in this study is how to accurately identify the conservation priority areas for urban ecological land. Taking Zhuhai City, located in China, as an example, an approach based on seven kinds of water ecosystem services was put forward, combining social demand and natural supply for the services to determine service targets and conservation priority areas. The results showed that the conservation priority areas in Zhuhai City covered 868 km2, accounting for 51.03% of the total land area, which were mainly covered by woodlands or paddy fields and fish ponds. In addition, by synthesizing ecological importance and ecological sensitivity, management zones for urban ecological land were delineated, including 510 km2 of primary control areas and 358 km2 of secondary control areas. In the supply and demand view of water ecosystem services, this study put forward an integrated ecosystem‐based approach for conservation priority area identification of urban ecological land, aiming to prevent land degradation and achieve urban ecological sustainability

    Simultaneous extraction and determination of alkaloids and organic acids in Uncariae Ramulas Cum Unicis by vortex-assisted matrix solid phase dispersion extraction coupled with UHPLC-MS/MS

    Get PDF
    A simple and efficient vortex-assisted matrix solid phase dispersion with a ultra-high-performance liquid chromatography-triple quadrupole mass spectrometer (VA-MSPD-UHPLC-MS/MS) was applied for simultaneous extraction and determination of seven alkaloids and three organic acids from Uncariae Ramulas Cum Unicis. The optimal extraction conditions of the target components were obtained by Box-Behnken design (BBD) combined with response surface methodology (RSM). The results of the method validation showed that this analytical method displayed good linearity with a correlation coefficient (r) no lower than 0.9990. The recoveries of ten active ingredients from Uncariae Ramulas Cum Unicis ranged from 95.9% to 103% (RSD ≤ 2.77%). The RSDs of intra-day and inter-day precisions were all below 2.97%. The present method exhibited not only lower solvent and sample usage, but also shorter sample processing and analysis time. Consequently, the developed VA-MSPD-UHPLC-MS/MS method could be successfully and effectively used for the extraction and analysis of ten active components from Uncariae Ramulas Cum Unicis

    Simulating the impact of Grain-for-Green Programme on ecosystem services trade-offs in Northwestern Yunnan, China

    Get PDF
    Prefecture in 2000, land use/cover has undergone dramatic changes. This study used the CLUE-S model to simulate land use change in 2030, and explored the spatial pattern and relationship of different ecosystem services under the four scenarios of GFGP. The results show that, GFGP can help to improve indirect services of ecosystems, such as carbon storage and soil conservation. However, direct services of the ecosystem will decline, such as food production and water yield. Compared with 2010, the overall supply level of the four ecosystem services is the most balanced in the moderate GFGP scenario. In this scenario, total food production decreased by 179,000 tons and water yield decreased by 57 million cubic meters. Carbon storage and soil conservation continued to grow, increasing by 21.86 million tons and 17.87 million tons, respectively. The changes of ecosystem services in the strong GFGP scenario are extreme. The increases in carbon storage and soil conservation are at the expense of a significant reduction in food production and water yield. It can be concluded that GFGP may lead to intensifying ecosystem services trade-offs. Through comparing the changes of ecosystem services under different GFGP scenarios, it is found that the implementation intensity of GFGP should be deeply concerned in policy making

    Global health effects of future atmospheric mercury emissions

    Get PDF
    Mercury is a potent neurotoxin that poses health risks to the global population. Anthropogenic mercury emissions to the atmosphere are projected to decrease in the future due to enhanced policy efforts such as the Minamata Convention, a legally-binding international treaty entered into force in 2017. Here, we report the development of a comprehensive climate-atmosphere-land-ocean-ecosystem and exposure-risk model framework for mercury and its application to project the health effects of future atmospheric emissions. Our results show that the accumulated health effects associated with mercury exposure during 2010–2050 are $19 (95% confidence interval: 4.7–54) trillion (2020 USD) realized to 2050 (3% discount rate) for the current policy scenario. Our results suggest a substantial increase in global human health cost if emission reduction actions are delayed. This comprehensive modeling approach provides a much-needed tool to help parties to evaluate the effectiveness of Hg emission controls as required by the Minamata Convention

    Genome-wide analysis of the TIFY family and function of CaTIFY7 and CaTIFY10b under cold stress in pepper (Capsicum annuum L.)

    Get PDF
    TIFY [TIF(F/Y)XG] proteins are a plant particular transcription factor family that regulates plant stress responses. Therefore, to fill this gap, we investigated CaTIFY genes in pepper. Gene structure and conserved motifs of the pepper TIFY gene family were systematically analyzed using sequence alignment analysis, Cis-acting element analysis, transcriptomic data, and RT-qPCR analysis, and their expression patterns were further analyzed using Virus-Induced Gene Silencing (VIGS) and cold stress reactive oxygen species (ROS) response. We identified 16 CaTIFY genes in pepper, which were dispersed among seven subgroups (JAZI, JAZII, JAZIII, PPD, TIFY, and ZIM/ZML). Several CaTIFY members had stress-related harmonic-responsive elements, and four (CaTIFY7, CaTIFY10b, CaTIFY1b, and CaTIFY6b) had low-temperature-responsive elements. Transcriptomic data and RT-qPCR analysis revealed that the TIFY genes in pepper displayed different expression patterns in the roots, stems, leaves, flower fruits, and seeds. In particular, CaTIFY7 was highly expressed in young leaves, and CaTIFY10b was highly expressed in roots. CaTIFYs participated in the regulation of several different abiotic stresses and CaTIFY7 and CaTIFY10b were significantly induced by cold stress. Additionally, Virus-Induced Gene Silencing (targeting CaTIFY7 and CaTIFY10b) resulted in plants that were sensitive to cold stress. Conversely, overexpression of CaTIFY7 and CaTIFY10b enhanced plant cold tolerance by promoting the expression of genes related to cold stress and the ROS response. CaTIFY7 and CaTIFY10b interacted with themselves and CaTIFY7 also interacted with CaTIFY10b in the yeast two-hybrid (Y2H) system. Our data provide a basis for further analysis of the role of pepper TIFY genes in cold-stress responses in the future

    Atmospheric Mercury Outflow from China and Interprovincial Trade.

    Get PDF
    Mercury (Hg) is characterized by its ability to migrate between continents and its adverse effects on human health, arousing great concern around the world. The transboundary transport of large anthropogenic Hg emissions from China has attracted particular attention, especially from neighboring countries. Here, we combine an atmospheric transport model, a mass budget analysis, and a multiregional input-output model to simulate the atmospheric Hg outflow from China and investigate the impacts of Chinese interprovincial trade on the outflow. The results show outflows of 423.0 Mg of anthropogenic Hg, consisting of 65.9% of the total Chinese anthropogenic emissions, from China in 2010. Chinese interprovincial trade promotes the transfer of atmospheric outflow from the eastern terrestrial boundary (-6.4 Mg year-1) to the western terrestrial boundary (+4.5 Mg year-1) and a net decrease in the atmospheric outflow for the whole boundary, reducing the chance of risks to foreign countries derived from transboundary Hg pollution from China. These impacts of interprovincial trade will be amplified due to the expected strengthened interprovincial trade in the future. The synergistic promotional effects of interprovincial trade versus Hg controls should be considered to reduce the transboundary Hg pollution from China

    The enormous repetitive Antarctic krill genome reveals environmental adaptations and population insights

    Get PDF
    Antarctic krill (Euphausia superba) is Earth’smost abundant wild animal, and its enormous biomass is vital to the Southern Ocean ecosystem. Here, we report a 48.01-Gb chromosome-level Antarctic krill genome, whose large genome size appears to have resulted from inter-genic transposable element expansions. Our assembly reveals the molecular architecture of the Antarctic krill circadian clock and uncovers expanded gene families associated with molting and energy metabolism, providing insights into adaptations to the cold and highly seasonal Antarctic environment. Population-level genome re-sequencing from four geographical sites around the Antarctic continent reveals no clear population structure but highlights natural selection associated with environmental variables. An apparent drastic reduction in krill population size 10 mya and a subsequent rebound 100 thousand years ago coincides with climate change events. Our findings uncover the genomic basis of Antarctic krill adaptations to the Southern Ocean and provide valuable resources for future Antarctic research
    corecore