46 research outputs found

    Evidence for a dissociation between the control of oculomotor capture and disengagement

    Get PDF
    The current study investigated whether capture of the eyes by a salient onset distractor and the disengagement of the eyes from that distractor are driven by the same or by different underlying control modes. A variant of the classic oculomotor capture task was used. Observers had to make a saccade to the only gray circle among red background circles. On some trials, a green (novel color), red (placeholder color) or gray (target color) distractor square was presented with sudden onset. Results showed that when participants reacted fast, oculomotor capture was primarily driven by bottom-up pop-out: both types of distractors (green and gray) that popped out among the red background elements showed more capture than a red distractor that did not pop-out. In contrast to initial capture, disengagement of the eyes from the distractor was driven by top-down target–distractor similarity effects. We also examined the time-course of this effect. The distractor could change from green to either the target or placeholder color. When the color change was early in time (30–40 ms after its onset), dwell times were strongly affected by the change, whereas the effect on oculomotor capture was weak. Importantly, a change occurring as early as 60–80 ms after distractor onset did neither affect capture nor dwell times, corroborating the assumption of parallel programming of saccades

    Learned Value Magnifies Salience-Based Attentional Capture

    Get PDF
    Visual attention is captured by physically salient stimuli (termed salience-based attentional capture), and by otherwise task-irrelevant stimuli that contain goal-related features (termed contingent attentional capture). Recently, we reported that physically nonsalient stimuli associated with value through reward learning also capture attention involuntarily (Anderson, Laurent, & Yantis, PNAS, 2011). Although it is known that physical salience and goal-relatedness both influence attentional priority, it is unknown whether or how attentional capture by a salient stimulus is modulated by its associated value. Here we show that a physically salient, task-irrelevant distractor previously associated with a large reward slows visual search more than an equally salient distractor previously associated with a smaller reward. This magnification of salience-based attentional capture by learned value extinguishes over several hundred trials. These findings reveal a broad influence of learned value on involuntary attentional capture

    Radio Emission from Ultra-Cool Dwarfs

    Full text link
    The 2001 discovery of radio emission from ultra-cool dwarfs (UCDs), the very low-mass stars and brown dwarfs with spectral types of ~M7 and later, revealed that these objects can generate and dissipate powerful magnetic fields. Radio observations provide unparalleled insight into UCD magnetism: detections extend to brown dwarfs with temperatures <1000 K, where no other observational probes are effective. The data reveal that UCDs can generate strong (kG) fields, sometimes with a stable dipolar structure; that they can produce and retain nonthermal plasmas with electron acceleration extending to MeV energies; and that they can drive auroral current systems resulting in significant atmospheric energy deposition and powerful, coherent radio bursts. Still to be understood are the underlying dynamo processes, the precise means by which particles are accelerated around these objects, the observed diversity of magnetic phenomenologies, and how all of these factors change as the mass of the central object approaches that of Jupiter. The answers to these questions are doubly important because UCDs are both potential exoplanet hosts, as in the TRAPPIST-1 system, and analogues of extrasolar giant planets themselves.Comment: 19 pages; submitted chapter to the Handbook of Exoplanets, eds. Hans J. Deeg and Juan Antonio Belmonte (Springer-Verlag

    The Role of Attention in a Joint-Action Effect

    Get PDF
    The most common explanation for joint-action effects has been the action co-representation account in which observation of another's action is represented within one's own action system. However, recent evidence has shown that the most prominent of these joint-action effects (i.e., the Social Simon effect), can occur when no co-actor is present. In the current work we examined whether another joint-action phenomenon (a movement congruency effect) can be induced when a participant performs their part of the task with a different effector to that of their co-actor and when a co-actor's action is replaced by an attention-capturing luminance signal. Contrary to what is predicted by the action co-representation account, results show that the basic movement congruency effect occurred in both situations. These findings challenge the action co-representation account of this particular effect and suggest instead that it is driven by bottom-up mechanisms

    A thalamic reticular networking model of consciousness

    Get PDF
    <p>Abstract</p> <p>[Background]</p> <p>It is reasonable to consider the thalamus a primary candidate for the location of consciousness, given that the thalamus has been referred to as the gateway of nearly all sensory inputs to the corresponding cortical areas. Interestingly, in an early stage of brain development, communicative innervations between the dorsal thalamus and telencephalon must pass through the ventral thalamus, the major derivative of which is the thalamic reticular nucleus (TRN). The TRN occupies a striking control position in the brain, sending inhibitory axons back to the thalamus, roughly to the same region where they receive afferents.</p> <p>[Hypotheses]</p> <p>The present study hypothesizes that the TRN plays a pivotal role in dynamic attention by controlling thalamocortical synchronization. The TRN is thus viewed as a functional networking filter to regulate conscious perception, which is possibly embedded in thalamocortical networks. Based on the anatomical structures and connections, modality-specific sectors of the TRN and the thalamus appear to be responsible for modality-specific perceptual representation. Furthermore, the coarsely overlapped topographic maps of the TRN appear to be associated with cross-modal or unitary conscious awareness. Throughout the latticework structure of the TRN, conscious perception could be accomplished and elaborated through accumulating intercommunicative processing across the first-order input signal and the higher-order signals from its functionally associated cortices. As the higher-order relay signals run cumulatively through the relevant thalamocortical loops, conscious awareness becomes more refined and sophisticated.</p> <p>[Conclusions]</p> <p>I propose that the thalamocortical integrative communication across first- and higher-order information circuits and repeated feedback looping may account for our conscious awareness. This TRN-modulation hypothesis for conscious awareness provides a comprehensive rationale regarding previously reported psychological phenomena and neurological symptoms such as blindsight, neglect, the priming effect, the threshold/duration problem, and TRN-impairment resembling coma. This hypothesis can be tested by neurosurgical investigations of thalamocortical loops via the TRN, while simultaneously evaluating the degree to which conscious perception depends on the severity of impairment in a TRN-modulated network.</p

    A competitive integration model of exogenous and endogenous eye movements

    Get PDF
    We present a model of the eye movement system in which the programming of an eye movement is the result of the competitive integration of information in the superior colliculi (SC). This brain area receives input from occipital cortex, the frontal eye fields, and the dorsolateral prefrontal cortex, on the basis of which it computes the location of the next saccadic target. Two critical assumptions in the model are that cortical inputs are not only excitatory, but can also inhibit saccades to specific locations, and that the SC continue to influence the trajectory of a saccade while it is being executed. With these assumptions, we account for many neurophysiological and behavioral findings from eye movement research. Interactions within the saccade map are shown to account for effects of distractors on saccadic reaction time (SRT) and saccade trajectory, including the global effect and oculomotor capture. In addition, the model accounts for express saccades, the gap effect, saccadic reaction times for antisaccades, and recorded responses from neurons in the SC and frontal eye fields in these tasks. © The Author(s) 2010

    The dot-probe task to measure emotional attention: A suitable measure in comparative studies?

    Get PDF

    Motion onset does not capture attention when subsequent motion is "smooth"

    Get PDF
    Previous research on the attentional effects of moving objects has shown that motion per se does not capture attention. However, in later studies it was argued that the onset of motion does capture attention. Here, we show that this motion-onset effect critically depends on motion jerkiness—that is, the rate at which the moving stimulus is refreshed. Experiment 1 used search displays with a static, a motion-onset, and an abrupt-onset stimulus, while systematically varying the refresh rate of the moving stimulus. The results showed that motion onset only captures attention when subsequent motion is jerky (8 and 17 Hz), not when it is smooth (33 and 100 Hz). Experiment 2 replaced motion onset with continuous motion, showing that motion jerkiness does not affect how continuous motion is processed. These findings do not support accounts that assume a special role for motion onset, but they are in line with the more general unique-event account
    corecore