111 research outputs found
Neighborhood Matching Network for Entity Alignment
Structural heterogeneity between knowledge graphs is an outstanding challenge
for entity alignment. This paper presents Neighborhood Matching Network (NMN),
a novel entity alignment framework for tackling the structural heterogeneity
challenge. NMN estimates the similarities between entities to capture both the
topological structure and the neighborhood difference. It provides two
innovative components for better learning representations for entity alignment.
It first uses a novel graph sampling method to distill a discriminative
neighborhood for each entity. It then adopts a cross-graph neighborhood
matching module to jointly encode the neighborhood difference for a given
entity pair. Such strategies allow NMN to effectively construct
matching-oriented entity representations while ignoring noisy neighbors that
have a negative impact on the alignment task. Extensive experiments performed
on three entity alignment datasets show that NMN can well estimate the
neighborhood similarity in more tough cases and significantly outperforms 12
previous state-of-the-art methods.Comment: 11 pages, accepted by ACL 202
Improving first order temporal fact extraction with unreliable data
In this paper, we deal with the task of extracting first order temporal facts from free text. This task is a subtask of relation extraction and it aims at extracting relations between entity and time. Currently, the field of relation extraction mainly focuses on extracting relations between entities. However, we observe that the multi-granular nature of time expressions can help us divide the dataset constructed by distant supervision to reliable and less reliable subsets, which can help to improve the extraction results on relations between entity and time. We accordingly contribute the first dataset focusing on the first order temporal fact extraction task using distant supervision. To fully utilize both the reliable and the less reliable data, we propose to use curriculum learning to rearrange the training procedure, label dropout to make the model be more conservative about less reliable data, and instance attention to help the model distinguish important instances from unimportant ones. Experiments show that these methods help the model outperform the model trained purely on the reliable dataset as well as the model trained on the dataset where all subsets are mixed together
Privet: A Privacy-Preserving Vertical Federated Learning Service for Gradient Boosted Decision Tables
Vertical federated learning (VFL) has recently emerged as an appealing
distributed paradigm empowering multi-party collaboration for training
high-quality models over vertically partitioned datasets. Gradient boosting has
been popularly adopted in VFL, which builds an ensemble of weak learners
(typically decision trees) to achieve promising prediction performance.
Recently there have been growing interests in using decision table as an
intriguing alternative weak learner in gradient boosting, due to its simpler
structure, good interpretability, and promising performance. In the literature,
there have been works on privacy-preserving VFL for gradient boosted decision
trees, but no prior work has been devoted to the emerging case of decision
tables. Training and inference on decision tables are different from that the
case of generic decision trees, not to mention gradient boosting with decision
tables in VFL. In light of this, we design, implement, and evaluate Privet, the
first system framework enabling privacy-preserving VFL service for gradient
boosted decision tables. Privet delicately builds on lightweight cryptography
and allows an arbitrary number of participants holding vertically partitioned
datasets to securely train gradient boosted decision tables. Extensive
experiments over several real-world datasets and synthetic datasets demonstrate
that Privet achieves promising performance, with utility comparable to
plaintext centralized learning.Comment: Accepted in IEEE Transactions on Services Computing (TSC
Towards Privacy-Preserving and Verifiable Federated Matrix Factorization
Recent years have witnessed the rapid growth of federated learning (FL), an
emerging privacy-aware machine learning paradigm that allows collaborative
learning over isolated datasets distributed across multiple participants. The
salient feature of FL is that the participants can keep their private datasets
local and only share model updates. Very recently, some research efforts have
been initiated to explore the applicability of FL for matrix factorization
(MF), a prevalent method used in modern recommendation systems and services. It
has been shown that sharing the gradient updates in federated MF entails
privacy risks on revealing users' personal ratings, posing a demand for
protecting the shared gradients. Prior art is limited in that they incur
notable accuracy loss, or rely on heavy cryptosystem, with a weak threat model
assumed. In this paper, we propose VPFedMF, a new design aimed at
privacy-preserving and verifiable federated MF. VPFedMF provides for federated
MF guarantees on the confidentiality of individual gradient updates through
lightweight and secure aggregation. Moreover, VPFedMF ambitiously and newly
supports correctness verification of the aggregation results produced by the
coordinating server in federated MF. Experiments on a real-world moving rating
dataset demonstrate the practical performance of VPFedMF in terms of
computation, communication, and accuracy
OrdinalCLIP: Learning Rank Prompts for Language-Guided Ordinal Regression
This paper presents a language-powered paradigm for ordinal regression.
Existing methods usually treat each rank as a category and employ a set of
weights to learn these concepts. These methods are easy to overfit and usually
attain unsatisfactory performance as the learned concepts are mainly derived
from the training set. Recent large pre-trained vision-language models like
CLIP have shown impressive performance on various visual tasks. In this paper,
we propose to learn the rank concepts from the rich semantic CLIP latent space.
Specifically, we reformulate this task as an image-language matching problem
with a contrastive objective, which regards labels as text and obtains a
language prototype from a text encoder for each rank. While prompt engineering
for CLIP is extremely time-consuming, we propose OrdinalCLIP, a differentiable
prompting method for adapting CLIP for ordinal regression. OrdinalCLIP consists
of learnable context tokens and learnable rank embeddings; The learnable rank
embeddings are constructed by explicitly modeling numerical continuity,
resulting in well-ordered, compact language prototypes in the CLIP space. Once
learned, we can only save the language prototypes and discard the huge language
model, resulting in zero additional computational overhead compared with the
linear head counterpart. Experimental results show that our paradigm achieves
competitive performance in general ordinal regression tasks, and gains
improvements in few-shot and distribution shift settings for age estimation.
The code is available at https://github.com/xk-huang/OrdinalCLIP.Comment: Accepted by NeurIPS2022. Code is available at
https://github.com/xk-huang/OrdinalCLI
Ada-DQA: Adaptive Diverse Quality-aware Feature Acquisition for Video Quality Assessment
Video quality assessment (VQA) has attracted growing attention in recent
years. While the great expense of annotating large-scale VQA datasets has
become the main obstacle for current deep-learning methods. To surmount the
constraint of insufficient training data, in this paper, we first consider the
complete range of video distribution diversity (\ie content, distortion,
motion) and employ diverse pretrained models (\eg architecture, pretext task,
pre-training dataset) to benefit quality representation. An Adaptive Diverse
Quality-aware feature Acquisition (Ada-DQA) framework is proposed to capture
desired quality-related features generated by these frozen pretrained models.
By leveraging the Quality-aware Acquisition Module (QAM), the framework is able
to extract more essential and relevant features to represent quality. Finally,
the learned quality representation is utilized as supplementary supervisory
information, along with the supervision of the labeled quality score, to guide
the training of a relatively lightweight VQA model in a knowledge distillation
manner, which largely reduces the computational cost during inference.
Experimental results on three mainstream no-reference VQA benchmarks clearly
show the superior performance of Ada-DQA in comparison with current
state-of-the-art approaches without using extra training data of VQA.Comment: 10 pages, 5 figures, to appear in ACM MM 202
Can Differential Privacy Practically Protect Collaborative Deep Learning Inference for the Internet of Things?
Collaborative inference has recently emerged as an attractive framework for
applying deep learning to Internet of Things (IoT) applications by splitting a
DNN model into several subpart models among resource-constrained IoT devices
and the cloud. However, the reconstruction attack was proposed recently to
recover the original input image from intermediate outputs that can be
collected from local models in collaborative inference. For addressing such
privacy issues, a promising technique is to adopt differential privacy so that
the intermediate outputs are protected with a small accuracy loss. In this
paper, we provide the first systematic study to reveal insights regarding the
effectiveness of differential privacy for collaborative inference against the
reconstruction attack. We specifically explore the privacy-accuracy trade-offs
for three collaborative inference models with four datasets (SVHN, GTSRB,
STL-10, and CIFAR-10). Our experimental analysis demonstrates that differential
privacy can practically be applied to collaborative inference when a dataset
has small intra-class variations in appearance. With the (empirically)
optimized privacy budget parameter in our study, the differential privacy
technique incurs accuracy loss of 0.476%, 2.066%, 5.021%, and 12.454% on SVHN,
GTSRB, STL-10, and CIFAR-10 datasets, respectively, while thwarting the
reconstruction attack.Comment: Accepted in Wireless Network
- …