151 research outputs found

    MELD-XI Score Is Associated With Short-Term Adverse Events in Patients With Heart Failure With Preserved Ejection

    Get PDF
    Aim: Accumulating evidence suggests that MELD-XI score holds the ability to predict the prognosis of congestive heart failure. However, most of the evidence is based on the end-stage heart failure population; thus, we aim to explore the association between the MELD-XI score and the prognosis in heart failure with preserved ejection fraction (HFpEF).Methods: A total of 30,096 patients hospitalized for HFpEF in Fujian Provincial Hospital between January 1, 2014 and July 17, 2020 with available measures of creatinine and liver function were enrolled. The primary endpoint was 60-day in-hospital all-cause mortality. Secondary endpoints were 60-day in-hospital cardiovascular mortality and 30-day rehospitalization for heart failure.Results: A total of 222 patients died within 60 days after admission, among which 75 deaths were considered cardiogenic. And 73 patients were readmitted for heart failure within 30 days after discharge. Generally, patients with an elevated MELD-XI score tended to have more comorbidities, higher NYHA class, and higher inflammatory biomarkers levels. Meanwhile, the MELD-XI score was positively correlated with NT-pro BNP, left atrial diameter, E/e' and negatively correlated with LVEF. After adjusting for conventional risk factors, the MELD-XI score was independently associated with 60-day in-hospital all-cause mortality [hazard ratio(HR) = 1.052, 95% confidential interval (CI) 1.022–1.083, P = 0.001], 60-day in-hospital cardiovascular mortality (HR = 1.064, 95% CI 1.013–1.118, P = 0.014), and 30-day readmission for heart failure (HR = 1.061, 95% CI 1.015–1.108, P = 0.009). Furthermore, the MELD-XI score added an incremental discriminatory capacity to risk stratification models developed based on this cohort.Conclusion: The MELD-XI score was associated with short-term adverse events and provided additional discriminatory capacity to risk stratification models in patients hospitalized for HFpEF

    Artificial intelligence-driven microbiome data analysis for estimation of postmortem interval and crime location

    Get PDF
    Microbial communities, demonstrating dynamic changes in cadavers and the surroundings, provide invaluable insights for forensic investigations. Conventional methodologies for microbiome sequencing data analysis face obstacles due to subjectivity and inefficiency. Artificial Intelligence (AI) presents an efficient and accurate tool, with the ability to autonomously process and analyze high-throughput data, and assimilate multi-omics data, encompassing metagenomics, transcriptomics, and proteomics. This facilitates accurate and efficient estimation of the postmortem interval (PMI), detection of crime location, and elucidation of microbial functionalities. This review presents an overview of microorganisms from cadavers and crime scenes, emphasizes the importance of microbiome, and summarizes the application of AI in high-throughput microbiome data processing in forensic microbiology

    Februus: Input Purification Defense Against Trojan Attacks on Deep Neural Network Systems

    Full text link
    We propose Februus; a new idea to neutralize highly potent and insidious Trojan attacks on Deep Neural Network (DNN) systems at run-time. In Trojan attacks, an adversary activates a backdoor crafted in a deep neural network model using a secret trigger, a Trojan, applied to any input to alter the model's decision to a target prediction---a target determined by and only known to the attacker. Februus sanitizes the incoming input by surgically removing the potential trigger artifacts and restoring the input for the classification task. Februus enables effective Trojan mitigation by sanitizing inputs with no loss of performance for sanitized inputs, Trojaned or benign. Our extensive evaluations on multiple infected models based on four popular datasets across three contrasting vision applications and trigger types demonstrate the high efficacy of Februus. We dramatically reduced attack success rates from 100% to near 0% for all cases (achieving 0% on multiple cases) and evaluated the generalizability of Februus to defend against complex adaptive attacks; notably, we realized the first defense against the advanced partial Trojan attack. To the best of our knowledge, Februus is the first backdoor defense method for operation at run-time capable of sanitizing Trojaned inputs without requiring anomaly detection methods, model retraining or costly labeled data.Comment: 16 pages, to appear in the 36th Annual Computer Security Applications Conference (ACSAC 2020

    Collective dynamics of actin and microtubule and its crosstalk mediated by FHDC1

    Get PDF
    The coordination between actin and microtubule network is crucial, yet this remains a challenging problem to dissect and our understanding of the underlying mechanisms remains limited. In this study, we used travelling waves in the cell cortex to characterize the collective dynamics of cytoskeletal networks. Our findings show that Cdc42 and F-BAR-dependent actin waves in mast cells are mainly driven by formin-mediated actin polymerization, with the microtubule-binding formin FH2 domain-containing protein 1 (FHDC1) as an early regulator. Knocking down FHDC1 inhibits actin wave formation, and this inhibition require FHDC1’s interaction with both microtubule and actin. The phase of microtubule depolymerization coincides with the nucleation of actin waves and microtubule stabilization inhibit actin waves, leading us to propose that microtubule shrinking and the concurrent release of FHDC1 locally regulate actin nucleation. Lastly, we show that FHDC1 is crucial for multiple cellular processes such as cell division and migration. Our data provided molecular insights into the nucleation mechanisms of actin waves and uncover an antagonistic interplay between microtubule and actin polymerization in their collective dynamics

    100 essential questions for the future of agriculture

    Get PDF
    Publication history: Accepted - 8 March 2023; Published online - 11 April 2023.The world is at a crossroad when it comes to agriculture. The global population is growing, and the demand for food is increasing, putting a strain on our agricultural resources and practices. To address this challenge, innovative, sustainable, and inclusive approaches to agriculture are urgently required. In this paper, we launched a call for Essential Questions for the Future of Agriculture and identified a priority list of 100 questions. We focus on 10 primary themes: transforming agri-food systems, enhancing resilience of agriculture to climate change, mitigating climate change through agriculture, exploring resources and technologies for breeding, advancing cultivation methods, sustaining healthy agroecosystems, enabling smart and controlled-environment agriculture for food security, promoting health and nutrition-driven agriculture, exploring economic opportunities and addressing social challenges, and integrating one health and modern agriculture. We emphasise the critical importance of interdisciplinary and multidisciplinary research that integrates both basic and applied sciences and bridges the gaps among various stakeholders for achieving sustainable agriculture. Key points Growing demand and resource limitations pose a critical challenge for agriculture, necessitating innovative and sustainable approaches. The paper identifies 100 priority questions for the future of agriculture, indicating current and future research directions. Sustainable agriculture depends on interdisciplinary and multidisciplinary research that harmonises basic and applied sciences and fosters collaboration among different stakeholders

    SirT1 modulates the estrogen–insulin-like growth factor-1 signaling for postnatal development of mammary gland in mice

    Get PDF
    INTRODUCTION: Estrogen and insulin-like growth factor-1 (IGF-1) play important roles in mammary gland development and breast cancer. SirT1 is a highly conserved protein deacetylase that can regulate the insulin/IGF-1 signaling in lower organisms, as well as a growing number of transcription factors, including NF-κB, in mammalian cells. Whether SirT1 regulates the IGF-1 signaling for mammary gland development and function, however, is not clear. In the present study, this role of SirT1 was examined by studying SirT1-deficient mice. METHODS: SirT1-deficient (SirT1(ko/ko)) mice were generated by crossing a new strain of mice harboring a conditional targeted mutation in the SirT1 gene (SirT1(co/co)) with CMV-Cre transgenic mice. Whole mount and histology analyses, immunofluorescence staining, immunohistochemistry, and western blotting were used to characterize mammary gland development in virgin and pregnant mice. The effect of exogenous estrogen was also examined by subcutaneous implantation of a slow-releasing pellet in the subscapular region. RESULTS: Both male and female SirT1(ko/ko )mice can be fertile despite the growth retardation phenotype. Virgin SirT1(ko/ko )mice displayed impeded ductal morphogenesis, whereas pregnant SirT1(ko/ko )mice manifested lactation failure due to an underdeveloped lobuloalveolar network. Estrogen implantation was sufficient to rescue ductal morphogenesis. Exogenous estrogen reversed the increased basal level of IGF-1 binding protein-1 expression in SirT1(ko/ko )mammary tissues, but not that of IκBα expression, suggesting that increased levels of estrogen enhanced the production of local IGF-1 and rescued ductal morphogenesis. Additionally, TNFα treatment enhanced the level of the newly synthesized IκBα in SirT1(ko/ko )cells. SirT1 deficiency therefore affects the cellular response to multiple extrinsic signals. CONCLUSION: SirT1 modulates the IGF-1 signaling critical for both growth regulation and mammary gland development in mice. SirT1 deficiency deregulates the expression of IGF-1 binding protein-1 and attenuates the effect of IGF-1 signals, including estrogen-stimulated local IGF-1 signaling for the onset of ductal morphogenesis. These findings suggest that the enzymatic activity of SirT1 may influence both normal growth and malignant growth of mammary epithelial cells

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data
    • …
    corecore