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Abstract 

The pervasiveness of multiple types of digital footprints recorded on e-commerce 
platforms have added fuel to the design of personalized recommender systems. Despite 
the abundance, consumers’ digital footprints can be confounded with many causes, both 
internally and externally. To disentangle the causes driving consumers’ behaviors, a 
causal recommendation method, i.e., DIPC, based on cause disentanglement at various 
consumption stages is proposed in the paper. Referring to related theories, interest and 
item popularity are recognized as causes driving consumer behaviors in the need 
recognition stage, while behaviors in the pre-purchase and purchase stages are assumed 
to be motivated by interest and conformity. To rigorously evaluate the performance of 
DIPC, extensive experiments are conducted on a real-world dataset with carefully 
designed intervention in terms of modeling multiple digital footprints and causality 
learning. The results show that DIPC outperforms all baselines significantly and 
possesses good interpretability, demonstrating the superiority of the proposed causal 
recommendation method. 

Keywords:  Recommender system, multiple digital footprints, causal graph, disentangled 
representation learning 

 

Introduction 

Personalized recommendation plays a vital role on modern e-commerce platforms. The click-through rate 
and subsequent purchases are found to drop drastically once the personalized recommendation is turned 
off (Sun et al. 2021). On e-commerce platforms nowadays various digital footprints of consumers are 
recorded and provide abundant fuel for designing personalized recommender systems (RSs). Conventional 
RSs are usually trained on consumers’ observational digital footprints such as ratings and clickstream data, 
among which the former is regarded as explicit feedback while the latter implicit feedback. Because 
consumers are increasingly reluctant to provide ratings due to costs like time and effort (Godes and Silva 
2012, Hu et al. 2017), modern RSs usually have to deal with consumers’ implicit feedback reflected through 
clickstream data, e.g., clicking on an item, adding it to the cart, etc. Compared with explicit feedback, 
implicit feedback from consumers is less effortful and consequently more noisy and biased. For instance, 
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consumers can easily be distracted from a top-ranked or recommended item and click on it, thus rendering 
the implicit feedback that does not actually represent their interest. In other words, an observed click and 
even purchase can result from either the focal consumer’s genuine interest or just trivial side causes. If a 
recommendation policy is generated by confounding all the causes together, it cannot fully reflect 
consumers’ interests and may harm consumers’ trust in the RSs. Moreover, confounding causes together 
gives rise to poor interpretability of recommendations. Hence, to deliver personalized recommendations 
based on implicit feedback, it is desirable for RSs to disentangle the causes that drive consumers’ purchase 
decisions. 

A typical online shopping process can be categorized into four stages, i.e., need recognition, pre-purchase, 
purchase, and post-purchase. The first three stages involve multiple types of implicit feedback, e.g., clicking 
on an item, adding an item to the cart, and purchasing an item, while the post-purchase stage usually 
contains explicit feedback like ratings. Due to the aforementioned reasons, we focus on the first three stages 
that include abundant implicit feedback, where each of consumer behaviors is entangled with multiple 
driving factors. For instance, clicking on an item can be driven by consumers’ interest and 
recommendation-induced item popularity simultaneously, while purchasing an item can be impacted by 
consumer interest and other consumers’ purchase decisions. To disentangle different factors behind 
consumers’ observed behaviors, it is important to take into account the characteristics of different stages. 
Extant works try to disentangle users’ behaviors from the perspective of interest and conformity (Zheng et 
al. 2021), while failing to differentiate the determinants of various stages. In this paper, we seek to study 
the consumption stages thoroughly and propose a recommendation strategy based on disentangled 
representation learning using causal graph modeling. 

Disentangling different factors behind consumers’ implicit feedback at various shopping stages is 
challenging. First, because there are no predefined labels for consumers’ different behaviors, pattern 
recognition needs to be performed on noisy data. Second, the influencing factors of different stages are 
different but intervened, for which the disentanglement mechanism needs to be carefully designed. Third, 
the stages of consumers’ shopping journeys can be flexible. In other words, consumers can either undergo 
a complete shopping journey including need recognition, pre-purchase evaluation, and then purchase, or 
directly jump to purchase impulsively. Hence, the transition paths of different stages are in multiple forms, 
rendering the disentanglement of different factors more challenging. 

To cope with the above-mentioned challenges, we refer to the consumer behavior literature for theoretical 
support for consumers’ various types of implicit feedback at different stages, based on which we seek to 
propose a causal graph-based method to disentangle different factors. According to the literature on 
consumer behavior, different behavioral biases like non-standard preferences, beliefs, as well as decision-
making, exist in various implicit feedback at different stages (Dowling et al. 2020). In other words, 
consumers’ implicit feedback at various stages can either be driven by their intrinsic interest or some 
external factors. Concretely speaking, consumers’ need recognition can either be due to intrinsic interest or 
external stimuli like item popularity induced by advertisements or recommendations (Lee et al. 2018). 
Thus, when disentangling the factors behind consumers’ implicit feedback at the need recognition stage, 
consumers’ intrinsic interest and extrinsic item popularity should be considered. In the pre-purchase phase, 
consumers tend to search insufficiently and overact to salient information like bestsellers (Brynjolfsson and 
Smith 2000, Ghose et al. 2013). Hence, for consumers’ implicit feedback in the pre-purchase stage, intrinsic 
interest and conformity to extrinsic salient signals are considered two driving factors. In terms of the 
purchase stage, the most prominent implicit feedback information is consumers’ purchase behavior, which 
is considered the most important type of input when designing RSs. The standard purchase stage involves 
weighing various attributes of the products and making a purchase decision. However, the purchase 
decision and timing can be biased compared with the standard ones in terms of preferences and the 
decision-making process (Iyer et al. 2020, Dowling et al. 2020). For instance, consumers can make 
purchase decisions impulsively by jumping to the purchase decision directly without going through the pre-
purchase evaluation stage (Beatty and Ferrell 1998). Similarly, the motivating factors can also be 
categorized intrinsically and externally, where the intrinsic driver is consumers’ thirst for the product, i.e., 
interest, while the external one is conformity to others’ purchase decisions. 

With the above analysis, the causes behind consumers’ various types of implicit feedback can be categorized 
as intrinsic and external ones. While the intrinsic one refers to consumers’ genuine interest persistently 
existing in different stages, the external stimuli differ at different stages, e.g., item popularity at the need 
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recognition stage and conformity to others’ purchase decisions at the pre-purchase and purchase stages. 
According to the extant literature in behavior science, the impacts of external stimuli can make consumers’ 
observed behavior deviate from the standard one, referred to as behavior bias (Dowling et al. 2020). To 
disentangle different factors that drive such behavior bias, we establish a causal graph to model consumers’ 
multi-stage implicit feedback and seek to learn the disentangled causes with the observational data. 
Specifically, three types of consumers’ implicit feedback are considered, i.e., view, add-to-cart, and 
purchase, representing the need recognition, pre-purchase, and purchase stages, backed by different 
causes, respectively. Given the potential impulsive purchase behavior of consumers, the three types of 
implicit feedback form a triangle structure as shown in Figure 1, which brings extra challenges to the 
inference of the causal graph. That is, the triangle structure implies a ternary decision where choices are 
not completely opposite, hampering the decision mechanism modeling and incurring a negative sample 
attribution problem of cause disentanglement. In this paper, a probabilistic inference framework is 
proposed to determine the decision path of consumers and the joint probability of the entire causal graph 
can thus be derived accordingly. An expectation-maximization (EM) algorithm is used to learn the 
parameters of the proposed model and therefore, given a recommendation policy, whether a consumer will 
purchase a certain product can be predicted. To evaluate the performance of the proposed method, an 
intervened dataset is constructed as the testbed for comparing against various baseline recommendation 
methods. Through extensive experiments, our proposed method is found to outperform all types of baseline 
methods, showing the superiority of our proposed casual graph-based approach. Furthermore, the causal 
graph-based approach also disentangles the factors behind consumers’ various types of implicit feedback 
and facilitates interpretable recommendations to both consumers and retailers. For retailers, the proposed 
method can help tell the more prominent factors driving consumers’ purchase decisions, which can be 
further used to nudge consumers in a personalized manner. For consumers, the summary of the driving 
factors of one’s purchase could help mitigate behavioral biases. 

 

Figure 1.  Consumers’ Digital Footprints and Causes of Each Behavior 

Related Work 

This section reviews three streams of literature related to our work, i.e., consumers’ behavioral biases, 
debiasing-oriented recommendation, and recommendation using multiple types of implicit feedback, in 
order to lay a solid foundation for our work both theoretically and methodologically.  

Behavioral Biases in Consumers’ Online Shopping Journey 

The noises and biases in consumers’ implicit feedback result from consumers’ behavioral biases, which have 
been documented in a series of related works. A recent review (Dowling et al. 2020) attributes consumers’ 
behavioral biases to three types, i.e., non-standard preferences, beliefs, and decision-making. The three 
types of behavioral biases exist in various stages of consumers’ purchase processes, leading the observed 
consumer behavior data to be biased. During the need recognition phase, consumers recognize a need due 
to either internal thirst or external signals like advertising, formulating non-standard preferences and 
beliefs (Lee et al. 2018). In the pre-purchase phase, consumers search for and evaluate alternatives by 
making forecasts about future events and behaviors, where belief-based biases are prominent due to 
forecast uncertainty (Dowling et al. 2020). In terms of product search, consumers may overestimate their 
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private information relative to that acquired by search efforts, resulting in overoptimism and inadequate 
search (Brynjolfsson and Smith 2000). During the purchase stage, consumers make decisions regarding 
whether to make a purchase, where non-standard decision-making can result from others’ persuasion as 
well as conformity to the preferences of relevant groups (Akerlof 1991). Furthermore, consumers’ decision-
making process can also be non-standard. For instance, in scenarios like impulsive purchases, consumers 
may directly jump to the purchase phase (Iyer et al. 2020). Hence, to leverage consumers’ digital footprints 
for personalized recommendation and marketing, it is crucial to recognize the sources of behavioral biases 
and develop a debiasing-oriented method accordingly. 

Debiasing Recommendation Methods 

Given the above-illustrated consumers’ behavioral biases, recommendation methods that fail to consider 
the causes of biases will lead to recommendations that cannot fully reflect consumer interest. Related works 
in recommendation system design regard the problem as a debiasing problem and propose three 
perspectives to solve the problem, including the inverse propensity score (IPS) approach, the exposure-
based model, and causal embedding. 

IPS Approach 

The IPS approach seeks to optimize an unbiased objective function (i.e., IPS estimator), which is 
constructed by weighting the error of each prediction with the inverse propensity of observation on user-
item interaction (Liang et al. 2016a, Saito et al. 2020). The propensity can be estimated in many ways such 
as relative item popularity (Saito et al. 2020), logistic regression (Schnabel et al. 2016), and low nuclear 
norm constraint (Ma and Chen 2019). It is proved that the empirical prediction error is closely related to 
the estimated propensity (Schnabel et al. 2016). Hence, the inaccuracy of propensity can result in poor 
debiasing performance. Even with an accurate propensity, the IPS estimator may be ineffective out of its 
uncontrolled variance. To alleviate this issue, other estimators, such as the self-normalized IPS estimator 
(Schnabel et al. 2016) and the doubly robust estimator (Wang et al. 2019), have been developed. Yet these 
estimators are not guaranteed to be unbiased. 

Exposure-based Model 

The exposure-based model is a probabilistic framework that assumes a latent exposure state before a 
consumer’s interaction with a product. For example, Liang et al. (2016b) consider exposure as a 
precondition for purchase and construct a hierarchical predictive model, based on which a dynamic version 
of the model is developed (Wang et al. 2018). By incorporating the bias formation mechanism in exposure 
modeling, this approach can debias by maximizing the joint likelihood. However, inferring the latent 
exposure probability that is formulated with a large scale of parameters easily leads to an over-fitting 
problem, which hampers the debiasing performance. 

Causal Embedding Approach 

The causal embedding approach aims to capture each cause that motivates user-item interaction with 
respective embeddings. Consumer interest, as a critical cause of behaviors, is extracted to achieve debiasing 
while preserving interpretability. In order to make embeddings capture causes, the model needs to be 
trained on cause-specific data that imply causality information. For instance, in addition to training on a 
large dataset of observed implicit feedback, Bonner and Vasile (2018) propose to employ a small dataset 
consisting of consumer behavior logs under a random treatment policy for domain adaption, which 
provides the causality information of consumers’ interest. However, such behavior logs are scarce in reality 
due to the considerable costs of data collection. Therefore, the effect of domain adaption is severely 
impeded. To effectively utilize causality information, recent work of causal embedding combines causal 
graph modeling with disentangled representation learning, which is also the backbone method adopted in 
this study. 

A causal graph is a directed acyclic graph where a node represents a variable and an edge denotes a causal 
relation between two variables (Pearl 2009). Since a causal graph depicts the mechanism of data generation, 
it can be used to guide the design of causal recommendation methods. For example, confounders in 
recommendation will be identified to conduct an intervention and therefore some paths in a causal graph 
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can be blocked to eliminate undesired effects by causal inference (Wang et al. 2021, Wei et al. 2021). 
Disentangled representation learning is developed for a similar purpose. As data are generated according 
to different factors which may change independently in terms of input distribution, learning disentangled 
representations of these factors is crucial for robust prediction (Bengio et al. 2013, Suter et al. 2019). Some 
studies have employed disentangled representation learning in RSs to capture consumers’ fine-grained 
preferences (Ma et al. 2019, Wang et al. 2020), yet other causes such as conformity are ignored. With a 
causal graph modeling consumers’ behaviors and the causes, disentangled representation learning 
techniques can utilize causality information to disentangle consumers’ interest from other causes, therefore 
achieving debiasing. A recent effort disentangles consumers’ interest and conformity by taking advantage 
of the common effect in causal inference to construct cause-specific data, based on which interest-related 
and conformity-related embeddings are inferred to represent respective causes independently (Zheng et al. 
2021). Nevertheless, the proposed causal embedding is still oversimplified. Consumers’ multiple digital 
footprints are not explored and the causes behind consumers’ behaviors in their shopping journey have not 
been systematically examined. Hence, our work seeks to move the extant research forward by incorporating 
multiple types of implicit feedback and comprehensively disentangling the causes behind it. 

Recommendation with Multiple Implicit Feedback 

With the pervasiveness of consumers’ multiple types of digital footprints, a research stream focusing on 
recommendation method design with multiple implicit feedback has emerged in recent years (Chen et al. 
2020b). Compared with RSs based on the records of a single type of behaviors, recommendations with 
multiple implicit feedback can leverage more information to improve performance. Generally, in multiple-
implicit-feedback-based RSs, a target behavior like purchase is concerned that needs to be predicted, while 
other behaviors such as view provide auxiliary information to aid in learning consumers’ preferences. For 
example, collective matrix factorization is extended to utilize multiple implicit feedback for 
recommendation, where information from different behaviors is integrated by embedding sharing (Zhao et 
al. 2015). Recent work has developed models with deep structure to further improve the capacity of learning 
correlations among multiple behaviors (Chen et al. 2020a, Gao et al. 2019). Despite achieving satisfactory 
prediction performance, these methods do not model consumers’ flexible decision process properly. 
Therefore, the decision mechanisms are unclear.  

Model 

To develop a causal recommendation method that disentangles consumers’ genuine interest from the 
effects of item popularity and conformity, we investigate the generation mechanisms of consumers’ digital 
footprints to build the causal graph. Our method belongs to the stream of research on causal graph with 
disentangled representation learning. The mechanism of cause disentanglement is training embeddings 
with cause-specific data that imply the extent to which user-item interactions source from each cause. That 
is, with cause-specific data, each type of embeddings will only capture the corresponding factor while being 
immune to others. Such embeddings are termed as causal embeddings. 

For a better illustration of the proposed method, important notations are outlined in Table 1, where 𝑢𝑢 ∈
{1, 2, … ,𝑈𝑈} indexes a user and 𝑖𝑖 ∈ {1, 2, … , 𝐼𝐼} indexes an item. 

Notations Descriptions 

𝑟𝑟𝑢𝑢𝑢𝑢 𝑢𝑢’s interest in 𝑖𝑖. 
𝑏𝑏𝑢𝑢𝑢𝑢 Effect of item popularity in 𝑢𝑢’s interaction with 𝑖𝑖. 
𝑐𝑐𝑢𝑢𝑢𝑢 Effect of conformity in 𝑢𝑢’s interaction with 𝑖𝑖. 
𝑣𝑣𝑢𝑢𝑢𝑢 Indicator of whether 𝑢𝑢 views 𝑖𝑖, 𝑣𝑣𝑢𝑢𝑢𝑢 ∈ {0,1}. 

𝑎𝑎𝑢𝑢𝑢𝑢 Indicator of whether 𝑢𝑢 adds 𝑖𝑖 to cart, 𝑎𝑎𝑢𝑢𝑢𝑢 ∈ {0,1}. 

𝑧𝑧𝑢𝑢𝑢𝑢 Indicator of whether 𝑢𝑢 purchases 𝑖𝑖, 𝑧𝑧𝑢𝑢𝑢𝑢 ∈ {0,1}. 

𝑠𝑠𝑢𝑢𝑢𝑢 
𝑢𝑢’s decision path after she views 𝑖𝑖, 𝑠𝑠𝑢𝑢𝑢𝑢 ∈ {0,1}. 𝑠𝑠𝑢𝑢𝑢𝑢 = 0 stands for 𝑢𝑢 deciding whether to add 
𝑖𝑖 to cart. 𝑠𝑠𝑢𝑢𝑢𝑢 = 1 stands for 𝑢𝑢 deciding whether to purchase 𝑖𝑖 directly after she views 𝑖𝑖. 
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𝜃𝜃𝑢𝑢𝑢𝑢 Parameter that controls the distribution of 𝑠𝑠𝑢𝑢𝑢𝑢. 
𝑝𝑝𝑢𝑢𝑟𝑟  Embedding of 𝑢𝑢 that is related to interest, 𝑝𝑝𝑢𝑢𝑟𝑟 ∈ ℝ𝐾𝐾. 

𝑝𝑝𝑢𝑢𝑏𝑏 Embedding of 𝑢𝑢 that is related to item popularity effect, 𝑝𝑝𝑢𝑢𝑏𝑏 ∈ ℝ𝐾𝐾. 

𝑝𝑝𝑢𝑢𝑐𝑐  Embedding of 𝑢𝑢 that is related to conformity effect, 𝑝𝑝𝑢𝑢𝑐𝑐 ∈ ℝ𝐾𝐾. 

𝑞𝑞𝑢𝑢𝑟𝑟 Embedding of 𝑖𝑖 that is related to interest, 𝑞𝑞𝑢𝑢𝑟𝑟 ∈ ℝ𝐾𝐾. 

𝑞𝑞𝑢𝑢𝑏𝑏 Embedding of 𝑖𝑖 that is related to item popularity effect, 𝑞𝑞𝑢𝑢𝑏𝑏 ∈ ℝ𝐾𝐾. 

𝑞𝑞𝑢𝑢𝑐𝑐 Embedding of 𝑖𝑖 that is related to conformity effect, 𝑞𝑞𝑢𝑢𝑐𝑐 ∈ ℝ𝐾𝐾. 

𝜓𝜓𝑢𝑢 Latent factor of 𝑢𝑢 that controls decision path choice, 𝜓𝜓𝑢𝑢 ∈ ℝ𝐾𝐾. 

𝛾𝛾𝑢𝑢 Latent factor of 𝑖𝑖 that controls decision path choice, 𝛾𝛾𝑢𝑢 ∈ ℝ𝐾𝐾. 

𝛼𝛼𝑡𝑡 ,𝛽𝛽𝑡𝑡 (𝑡𝑡
∈ {1,2,3,4}) Weights of causes in consumer’s decision-making. 

Table 1. Basic Notations 

Model Description 

The causal graph of our model for Disentangling consumer Interest, item Popularity effect, and 
Conformity effect (DIPC) is illustrated in Figure 2. We describe the proposed method in detail as follows. 

 

Figure 2.  Causal Graph of Consumers’ Digital Footprints 

Causes 

We start by formulating the causes (i.e., interest, item popularity effect, and conformity effect) to develop 
our model. Following the latent factor manner (Koren et al. 2009), user 𝑢𝑢 ’s interest in item 𝑖𝑖  can be 
factorized as 

𝑟𝑟𝑢𝑢𝑢𝑢 = 𝑝𝑝𝑢𝑢𝑟𝑟
𝑇𝑇𝑞𝑞𝑢𝑢𝑟𝑟, (1) 

where 𝑝𝑝𝑢𝑢𝑟𝑟  and 𝑞𝑞𝑢𝑢𝑟𝑟 are the interest-related embeddings of 𝑢𝑢 and 𝑖𝑖, respectively. 

Extant works usually assume that item popularity effects and conformity effects only depend on the item 
and treat them as statically item-specific terms (Saito et al. 2020, Wei et al. 2021). However, these effects 
may also vary across different users due to consumers’ heterogeneity in taking in such causes (Zheng et al. 
2021). For instance, some consumers are more likely to follow others in decision-making, giving rise to a 
more significant conformity effect than other consumers. Therefore, we model the effects of item popularity 
and conformity in a similar way to that of interest, that is, 

𝑏𝑏𝑢𝑢𝑢𝑢 = 𝑝𝑝𝑢𝑢𝑏𝑏
𝑇𝑇𝑞𝑞𝑢𝑢𝑏𝑏, (2) 
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𝑐𝑐𝑢𝑢𝑢𝑢 = 𝑝𝑝𝑢𝑢𝑐𝑐
𝑇𝑇𝑞𝑞𝑢𝑢𝑐𝑐, (3) 

where 𝑝𝑝𝑢𝑢𝑏𝑏 and 𝑞𝑞𝑢𝑢𝑏𝑏 are the popularity-effect-related embeddings of 𝑢𝑢 and 𝑖𝑖, and 𝑝𝑝𝑢𝑢𝑐𝑐  and 𝑞𝑞𝑢𝑢𝑐𝑐 are the conformity-
related embeddings of 𝑢𝑢 and 𝑖𝑖. 

Consumer Behaviors 

View. Consumers start their shopping with viewing items. On the one hand, selective exposure theory 
(Jonas et al. 2001) implies that consumers may be selectively exposed to items they are interested in. On 
the other hand, RSs recommend popular products more frequently than their values would warrant, 
exposing consumers to them with a higher probability (Ciampaglia et al. 2018, Fleder and Hosanagar 2009, 
Nikolov et al. 2019). Therefore, the intention of user 𝑢𝑢 viewing item 𝑖𝑖 can be formulated as a weighted sum 
of interest 𝑟𝑟𝑢𝑢𝑢𝑢 and item popularity effect 𝑏𝑏𝑢𝑢𝑢𝑢, 

�̅�𝑣𝑢𝑢𝑢𝑢 = 𝛼𝛼1𝑟𝑟𝑢𝑢𝑢𝑢 + 𝛽𝛽1𝑏𝑏𝑢𝑢𝑢𝑢 , (4) 

where 𝛼𝛼1 > 0 and 𝛽𝛽1 > 0 are the weights of causes to be learned (similarly hereinafter). 

Being consistent with the Logit model, we assume the view probability 

𝑃𝑃(𝑣𝑣𝑢𝑢𝑢𝑢 = 1|𝑟𝑟𝑢𝑢𝑢𝑢 , 𝑏𝑏𝑢𝑢𝑢𝑢) = Λ(�̅�𝑣𝑢𝑢𝑢𝑢) = Λ(𝛼𝛼1𝑟𝑟𝑢𝑢𝑢𝑢 + 𝛽𝛽1𝑏𝑏𝑢𝑢𝑢𝑢) ≡ Λ𝑢𝑢𝑢𝑢𝑣𝑣 , (5) 

where Λ(𝑥𝑥) = exp(𝑥𝑥)
1+exp(𝑥𝑥)

, which is the cumulative distribution function (CDF) of a Logistic distribution; and 

the notation “≡” represents “denoted as” or “equivalent to”. 

Choice of decision paths. After user 𝑢𝑢 views item 𝑖𝑖, she may purchase it directly, add it to the cart for further 
consideration, or do nothing, forming the triangle structure in Figure 1. Instead of modeling the decision 
process behind the triangle structure, extant works focus on the correlations in view, add-to-cart, and 
purchase behaviors to construct a deep learning frame. For instance, a transition matrix can be employed 
for transforming the parameters controlling behavior into those controlling subsequent behaviors (Chen et 
al. 2020a). These models are intuitive yet ignore the critical causality information in decisions, hindering 
accurate predictions of purchase under different recommendation policies. Moreover, the behavior branch 
in the triangle structure implies a ternary decision where choices are not completely opposite. In other 
words, after 𝑢𝑢 views 𝑖𝑖, the choice of doing nothing is opposite to purchasing 𝑖𝑖 directly and adding 𝑖𝑖 to cart, 
while the latter two choices are not opposite to each other. We cannot even conclude the extent of preference 
behind the choice of purchasing 𝑖𝑖 directly and that of adding 𝑖𝑖 to cart, for this decision depends on other 
factors like consumers’ shopping habits. Therefore, the triangle structure severely hampers decision 
mechanism modeling and causality learning. 

To capture the causality behind the triangle structure, we introduce 𝑠𝑠𝑢𝑢𝑢𝑢, the indicator of decision path after 
𝑢𝑢 views 𝑖𝑖, to model the decision process, that is, 

𝑠𝑠𝑢𝑢𝑢𝑢 = �0,   𝑡𝑡ℎ𝑒𝑒 𝑝𝑝𝑎𝑎𝑡𝑡ℎ 𝑡𝑡ℎ𝑎𝑎𝑡𝑡 𝑢𝑢 𝑑𝑑𝑒𝑒𝑐𝑐𝑖𝑖𝑑𝑑𝑒𝑒𝑠𝑠 𝑤𝑤ℎ𝑒𝑒𝑡𝑡ℎ𝑒𝑒𝑟𝑟 𝑡𝑡𝑡𝑡 𝑎𝑎𝑑𝑑𝑑𝑑 𝑖𝑖 𝑡𝑡𝑡𝑡 𝑐𝑐𝑎𝑎𝑟𝑟𝑡𝑡 𝑖𝑖𝑠𝑠 𝑐𝑐ℎ𝑡𝑡𝑠𝑠𝑒𝑒𝑒𝑒,             
1,   𝑡𝑡ℎ𝑒𝑒 𝑝𝑝𝑎𝑎𝑡𝑡ℎ 𝑡𝑡ℎ𝑎𝑎𝑡𝑡 𝑢𝑢 𝑑𝑑𝑒𝑒𝑐𝑐𝑖𝑖𝑑𝑑𝑒𝑒𝑠𝑠 𝑤𝑤ℎ𝑒𝑒𝑡𝑡ℎ𝑒𝑒𝑟𝑟 𝑡𝑡𝑡𝑡 𝑝𝑝𝑢𝑢𝑟𝑟𝑐𝑐ℎ𝑎𝑎𝑠𝑠𝑒𝑒 𝑖𝑖 𝑑𝑑𝑖𝑖𝑟𝑟𝑒𝑒𝑐𝑐𝑡𝑡𝑑𝑑𝑑𝑑 𝑖𝑖𝑠𝑠 𝑐𝑐ℎ𝑡𝑡𝑠𝑠𝑒𝑒𝑒𝑒. (6) 

where 𝑠𝑠𝑢𝑢𝑢𝑢 = 1 implies 𝑢𝑢 chooses an impulsive decision path that bypasses the add-to-cart stage, while 𝑠𝑠𝑢𝑢𝑢𝑢 =
0  suggests a more cautious decision path. This choice depends on 𝑢𝑢 ’s shopping habits as well as the 
characteristics of 𝑖𝑖. For example, 𝑠𝑠𝑢𝑢𝑢𝑢 = 1 may hold with a high probability if 𝑢𝑢 is an impulsive decision 
maker or 𝑖𝑖 is in a less differentiated market. Therefore, we assume the Bernoulli distribution of 𝑠𝑠𝑢𝑢𝑢𝑢 to be 

𝑃𝑃(𝑠𝑠𝑢𝑢𝑢𝑢 = 1|𝜃𝜃𝑢𝑢𝑢𝑢) = 𝜃𝜃𝑢𝑢𝑢𝑢 ≡ Λ(𝜓𝜓𝑢𝑢𝑇𝑇𝛾𝛾𝑢𝑢). (7) 

That is, 𝑠𝑠𝑢𝑢𝑢𝑢~𝐵𝐵𝑒𝑒𝑟𝑟𝑒𝑒𝑡𝑡𝑢𝑢𝑑𝑑𝑑𝑑𝑖𝑖(𝜃𝜃𝑢𝑢𝑢𝑢) with 𝜃𝜃𝑢𝑢𝑢𝑢 factorized as Λ(𝜓𝜓𝑢𝑢𝑇𝑇𝛾𝛾𝑢𝑢), where  𝜓𝜓𝑢𝑢 and 𝛾𝛾𝑢𝑢 are the latent factors of 𝑢𝑢 and 𝑖𝑖 
that are related to the decision path choice. 

With the latent variable 𝑠𝑠𝑢𝑢𝑢𝑢 indicating the decision path, we transform the ternary decision to a mixture of 
two binary decisions that the decision mechanisms can be effectively modeled as follows. 

Add-to-cart. After user 𝑢𝑢  views item 𝑖𝑖  and chooses a decision path, she steps into the pre-purchase or 
purchase stage. According to utility theory that consumers make decisions seeking to maximize utility 
(Fishburn 1970), 𝑢𝑢 will add products she likes to cart for consideration of purchase. Meanwhile, social 
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influence theory indicates that consumers tend to follow others in decision-making while neglecting their 
own judgments, showing the effect of conformity (Baeza-Yates 2018, Karaman 2021, Muchnik et al. 2013). 

To consider both the consumer’s interest 𝑟𝑟𝑢𝑢𝑢𝑢  and conformity effect 𝑐𝑐𝑢𝑢𝑢𝑢 , we assume the probability of 𝑢𝑢 
adding 𝑖𝑖 to cart as follows: 

𝑃𝑃(𝑎𝑎𝑢𝑢𝑢𝑢 = 1|𝑣𝑣𝑢𝑢𝑢𝑢 = 1, 𝑠𝑠𝑢𝑢𝑢𝑢 = 0, 𝑟𝑟𝑢𝑢𝑢𝑢 , 𝑐𝑐𝑢𝑢𝑢𝑢) = Λ(𝛼𝛼2𝑟𝑟𝑢𝑢𝑢𝑢 + 𝛽𝛽2𝑐𝑐𝑢𝑢𝑢𝑢) ≡ Λ𝑢𝑢𝑢𝑢𝑎𝑎 . (8) 

If 𝑢𝑢 has not viewed 𝑖𝑖, or 𝑢𝑢 has chosen the decision path of deciding whether to purchase 𝑖𝑖 directly after view 
(i.e., 𝑢𝑢 bypasses the pre-purchase stage), the probability of 𝑢𝑢 adding 𝑖𝑖 to cart will be zero, that is, 

𝑃𝑃(𝑎𝑎𝑢𝑢𝑢𝑢 = 1|𝑣𝑣𝑢𝑢𝑢𝑢 = 0, 𝑠𝑠𝑢𝑢𝑢𝑢 , 𝑟𝑟𝑢𝑢𝑢𝑢 , 𝑐𝑐𝑢𝑢𝑢𝑢) = 0, (9) 

𝑃𝑃(𝑎𝑎𝑢𝑢𝑢𝑢 = 1|𝑣𝑣𝑢𝑢𝑢𝑢 = 1, 𝑠𝑠𝑢𝑢𝑢𝑢 = 1, 𝑟𝑟𝑢𝑢𝑢𝑢 , 𝑐𝑐𝑢𝑢𝑢𝑢) = 0. (10) 

Purchase. The purchase decision mechanism can be explained with utility theory (Fishburn 1970) and 
social influence theory (Muchnik et al. 2013) as well. That is, consumers purchase products they like to 
maximize utility while influenced by others in making such a decision. There are two ways that can lead to 
purchasing, i.e., purchase directly after view and purchase after add-to-cart. Hence, we model the purchase 
probability in different cases as follows. 

If user 𝑢𝑢 has viewed item 𝑖𝑖 and chosen the decision path to decide whether to purchase 𝑖𝑖 directly (i.e., 𝑣𝑣𝑢𝑢𝑢𝑢 =
1, 𝑠𝑠𝑢𝑢𝑢𝑢 = 1), 

𝑃𝑃(𝑧𝑧𝑢𝑢𝑢𝑢 = 1|𝑣𝑣𝑢𝑢𝑢𝑢 = 1, 𝑠𝑠𝑢𝑢𝑢𝑢 = 1,𝑎𝑎𝑢𝑢𝑢𝑢 , 𝑟𝑟𝑢𝑢𝑢𝑢 , 𝑐𝑐𝑢𝑢𝑢𝑢) = Λ(𝛼𝛼3𝑟𝑟𝑢𝑢𝑢𝑢 + 𝛽𝛽3𝑐𝑐𝑢𝑢𝑢𝑢) ≡ Λ𝑢𝑢𝑢𝑢𝑣𝑣𝑣𝑣 . (11) 

If 𝑢𝑢  has viewed 𝑖𝑖  and chosen the decision path to decide whether to add 𝑖𝑖  to the cart, the purchase 
probability depends on the add-to-cart decision. That is, if 𝑢𝑢  has indeed added 𝑖𝑖  to the cart (i.e., 𝑣𝑣𝑢𝑢𝑢𝑢 =
1, 𝑠𝑠𝑢𝑢𝑢𝑢 = 0,𝑎𝑎𝑢𝑢𝑢𝑢 = 1), the probability is 

𝑃𝑃(𝑧𝑧𝑢𝑢𝑢𝑢 = 1|𝑣𝑣𝑢𝑢𝑢𝑢 = 1, 𝑠𝑠𝑢𝑢𝑢𝑢 = 0,𝑎𝑎𝑢𝑢𝑢𝑢 = 1, 𝑟𝑟𝑢𝑢𝑢𝑢 , 𝑐𝑐𝑢𝑢𝑢𝑢) = Λ(𝛼𝛼4𝑟𝑟𝑢𝑢𝑢𝑢 + 𝛽𝛽4𝑐𝑐𝑢𝑢𝑢𝑢) ≡ Λ𝑢𝑢𝑢𝑢𝑎𝑎𝑣𝑣, (12) 

if 𝑢𝑢 has decided not to add 𝑖𝑖 to cart (i.e., 𝑣𝑣𝑢𝑢𝑢𝑢 = 1, 𝑠𝑠𝑢𝑢𝑢𝑢 = 0,𝑎𝑎𝑢𝑢𝑢𝑢 = 0), she cannot purchase 𝑖𝑖, the probability is 

𝑃𝑃(𝑧𝑧𝑢𝑢𝑢𝑢 = 1|𝑣𝑣𝑢𝑢𝑢𝑢 = 1, 𝑠𝑠𝑢𝑢𝑢𝑢 = 0,𝑎𝑎𝑢𝑢𝑢𝑢 = 0, 𝑟𝑟𝑢𝑢𝑢𝑢 , 𝑐𝑐𝑢𝑢𝑢𝑢) = 0. (13) 

Finally, since view is the premise for purchase, the following probability holds 

𝑃𝑃(𝑧𝑧𝑢𝑢𝑢𝑢 = 1|𝑣𝑣𝑢𝑢𝑢𝑢 = 0, 𝑠𝑠𝑢𝑢𝑢𝑢 ,𝑎𝑎𝑢𝑢𝑢𝑢 , 𝑟𝑟𝑢𝑢𝑢𝑢 , 𝑐𝑐𝑢𝑢𝑢𝑢) = 0. (14) 

Note that the weights for causes (i.e.,  𝛼𝛼𝑡𝑡 ,𝛽𝛽𝑡𝑡 (𝑡𝑡 ∈ {1,2,3,4}) ) are differentiated to capture different 
mechanisms of the decisions. 

Likelihood. As illustrated in Figure 2, for each user-item pair (𝑢𝑢, 𝑖𝑖), 𝑣𝑣𝑢𝑢𝑢𝑢, 𝑎𝑎𝑢𝑢𝑢𝑢, and 𝑧𝑧𝑢𝑢𝑢𝑢 are observable while 𝑠𝑠𝑢𝑢𝑢𝑢 
is not. The marginal likelihood of behaviors within (𝑢𝑢, 𝑖𝑖) can be formulated as 

𝑃𝑃(𝑣𝑣𝑢𝑢𝑢𝑢 ,𝑎𝑎𝑢𝑢𝑢𝑢 , 𝑧𝑧𝑢𝑢𝑢𝑢|𝑟𝑟𝑢𝑢𝑢𝑢 , 𝑏𝑏𝑢𝑢𝑢𝑢 , 𝑐𝑐𝑢𝑢𝑢𝑢 ,𝜃𝜃𝑢𝑢𝑢𝑢)

= � 𝑃𝑃(𝑧𝑧𝑢𝑢𝑢𝑢|𝑣𝑣𝑢𝑢𝑢𝑢 , 𝑠𝑠𝑢𝑢𝑢𝑢 ,𝑎𝑎𝑢𝑢𝑢𝑢 , 𝑟𝑟𝑢𝑢𝑢𝑢 , 𝑐𝑐𝑢𝑢𝑢𝑢)𝑃𝑃(𝑎𝑎𝑢𝑢𝑢𝑢|𝑣𝑣𝑢𝑢𝑢𝑢 , 𝑠𝑠𝑢𝑢𝑢𝑢 , 𝑟𝑟𝑢𝑢𝑢𝑢 , 𝑐𝑐𝑢𝑢𝑢𝑢)𝑃𝑃(𝑣𝑣𝑢𝑢𝑢𝑢|𝑟𝑟𝑢𝑢𝑢𝑢 ,𝑏𝑏𝑢𝑢𝑢𝑢)𝑃𝑃(𝑠𝑠𝑢𝑢𝑢𝑢 = 𝑠𝑠|𝜃𝜃𝑢𝑢𝑢𝑢)
𝑠𝑠∈{0,1}

. (15) 

By taking advantage of the behavior sequence, we only need to consider four cases to derive the likelihood, 
that is, the probability of 𝑢𝑢 not viewing 𝑖𝑖 (Equation (16)), the probability of 𝑢𝑢 viewing 𝑖𝑖 without adding 𝑖𝑖 to 
cart or purchasing 𝑖𝑖 (Equation (17)), the probability of 𝑢𝑢 purchasing 𝑖𝑖 directly after view (Equation (18)), 
and the probability of 𝑢𝑢 adding 𝑖𝑖 to cart (either purchasing 𝑖𝑖 or not) (Equation (19)). 

𝑃𝑃(𝑣𝑣𝑢𝑢𝑢𝑢 = 0|𝑟𝑟𝑢𝑢𝑢𝑢 , 𝑏𝑏𝑢𝑢𝑢𝑢) = 1 − Λ𝑢𝑢𝑢𝑢𝑣𝑣 , (16) 

𝑃𝑃(𝑣𝑣𝑢𝑢𝑢𝑢 = 1,𝑎𝑎𝑢𝑢𝑢𝑢 = 0, 𝑧𝑧𝑢𝑢𝑢𝑢 = 0|𝑟𝑟𝑢𝑢𝑢𝑢 ,𝑏𝑏𝑢𝑢𝑢𝑢 , 𝑐𝑐𝑢𝑢𝑢𝑢 ,𝜃𝜃𝑢𝑢𝑢𝑢) = Λ𝑢𝑢𝑢𝑢𝑣𝑣 �𝜃𝜃𝑢𝑢𝑢𝑢(1 − Λ𝑢𝑢𝑢𝑢𝑣𝑣𝑣𝑣) + (1 − 𝜃𝜃𝑢𝑢𝑢𝑢)(1 − Λ𝑢𝑢𝑢𝑢𝑎𝑎 )�, (17) 

𝑃𝑃(𝑣𝑣𝑢𝑢𝑢𝑢 = 1,𝑎𝑎𝑢𝑢𝑢𝑢 = 0, 𝑧𝑧𝑢𝑢𝑢𝑢 = 1|𝑟𝑟𝑢𝑢𝑢𝑢 ,𝑏𝑏𝑢𝑢𝑢𝑢 , 𝑐𝑐𝑢𝑢𝑢𝑢 ,𝜃𝜃𝑢𝑢𝑢𝑢) = Λ𝑢𝑢𝑢𝑢𝑣𝑣 𝜃𝜃𝑢𝑢𝑢𝑢Λ𝑢𝑢𝑢𝑢𝑣𝑣𝑣𝑣 , (18) 

𝑃𝑃(𝑣𝑣𝑢𝑢𝑢𝑢 = 1,𝑎𝑎𝑢𝑢𝑢𝑢 = 1, 𝑧𝑧𝑢𝑢𝑢𝑢|𝑟𝑟𝑢𝑢𝑢𝑢 ,𝑏𝑏𝑢𝑢𝑢𝑢 , 𝑐𝑐𝑢𝑢𝑢𝑢 ,𝜃𝜃𝑢𝑢𝑢𝑢) = Λ𝑢𝑢𝑢𝑢𝑣𝑣 (1 − 𝜃𝜃𝑢𝑢𝑢𝑢)Λ𝑢𝑢𝑢𝑢𝑎𝑎 (Λ𝑢𝑢𝑢𝑢𝑎𝑎𝑣𝑣)𝑣𝑣𝑢𝑢𝑢𝑢(1 − Λ𝑢𝑢𝑢𝑢𝑎𝑎𝑣𝑣)1−𝑣𝑣𝑢𝑢𝑢𝑢 . (19) 

We utilize the negative log-likelihood as the loss function of behavior modeling, that is, 
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ℒ𝑏𝑏𝑏𝑏ℎ𝑎𝑎𝑣𝑣𝑢𝑢𝑎𝑎𝑟𝑟 = −��

⎝

⎛

𝕀𝕀(𝑣𝑣𝑢𝑢𝑢𝑢 = 0)log𝑃𝑃(𝑣𝑣𝑢𝑢𝑢𝑢 = 0|𝑟𝑟𝑢𝑢𝑢𝑢 , 𝑏𝑏𝑢𝑢𝑢𝑢)
+𝕀𝕀(𝑣𝑣𝑢𝑢𝑢𝑢 = 1,𝑎𝑎𝑢𝑢𝑢𝑢 = 0, 𝑧𝑧𝑢𝑢𝑢𝑢 = 0)log𝑃𝑃(𝑣𝑣𝑢𝑢𝑢𝑢 = 1,𝑎𝑎𝑢𝑢𝑢𝑢 = 0, 𝑧𝑧𝑢𝑢𝑢𝑢 = 0|𝑟𝑟𝑢𝑢𝑢𝑢 ,𝑏𝑏𝑢𝑢𝑢𝑢 , 𝑐𝑐𝑢𝑢𝑢𝑢 ,𝜃𝜃𝑢𝑢𝑢𝑢)
+𝕀𝕀(𝑣𝑣𝑢𝑢𝑢𝑢 = 1,𝑎𝑎𝑢𝑢𝑢𝑢 = 0, 𝑧𝑧𝑢𝑢𝑢𝑢 = 1)log𝑃𝑃(𝑣𝑣𝑢𝑢𝑢𝑢 = 1,𝑎𝑎𝑢𝑢𝑢𝑢 = 0, 𝑧𝑧𝑢𝑢𝑢𝑢 = 1|𝑟𝑟𝑢𝑢𝑢𝑢 ,𝑏𝑏𝑢𝑢𝑢𝑢 , 𝑐𝑐𝑢𝑢𝑢𝑢 ,𝜃𝜃𝑢𝑢𝑢𝑢)
+𝕀𝕀(𝑣𝑣𝑢𝑢𝑢𝑢 = 1,𝑎𝑎𝑢𝑢𝑢𝑢 = 1)log𝑃𝑃(𝑣𝑣𝑢𝑢𝑢𝑢 = 1,𝑎𝑎𝑢𝑢𝑢𝑢 = 1, 𝑧𝑧𝑢𝑢𝑢𝑢|𝑟𝑟𝑢𝑢𝑢𝑢 ,𝑏𝑏𝑢𝑢𝑢𝑢 , 𝑐𝑐𝑢𝑢𝑢𝑢 ,𝜃𝜃𝑢𝑢𝑢𝑢) ⎠

⎞
𝐼𝐼

𝑢𝑢=1

𝑈𝑈

𝑢𝑢=1

, (20) 

where 𝕀𝕀(∙) is the indicator function. 

With ℒ𝑏𝑏𝑏𝑏ℎ𝑎𝑎𝑣𝑣𝑢𝑢𝑎𝑎𝑟𝑟  as the objective function, parameters can be learned for predicting behaviors. However, 
causes are just conceptual at this step and do not capture practical patterns. To learn the causality, we next 
introduce the disentangled representation learning task to assign practical meanings to 𝑟𝑟𝑢𝑢𝑢𝑢, 𝑏𝑏𝑢𝑢𝑢𝑢, and 𝑐𝑐𝑢𝑢𝑢𝑢. 

Causal Embedding Learning 

In order to make 𝑟𝑟𝑢𝑢𝑢𝑢, 𝑏𝑏𝑢𝑢𝑢𝑢, and 𝑐𝑐𝑢𝑢𝑢𝑢 capture causes, the model needs to be trained on cause-specific data. In 
other words, the information of the extent to which a behavior is driven by a cause is indispensable for 
causality learning. Yet the behaviors only reflect effects where causes are entangled. Hence, other clues 
related to the cause need to be exploited. We assume there exist proxy variables of item popularity effect 
and conformity effect, which can be constructed from training data; and then, cause-specific data can be 
built for disentangling causes based on the property of the common effect. Since a consumer’s interest is 
mixed with item popularity effect (in view) or conformity effect (in add-to-cart and purchase), we 
disentangle 𝑟𝑟𝑢𝑢𝑢𝑢 from 𝑏𝑏𝑢𝑢𝑢𝑢 and 𝑐𝑐𝑢𝑢𝑢𝑢. 

Disentangling interest and item popularity effect. Let 𝜋𝜋 = (𝜋𝜋1,𝜋𝜋2, … ,𝜋𝜋𝐼𝐼)𝑇𝑇 be the proxy variable for the item 
popularity effect. That is, if 𝜋𝜋𝑢𝑢 > 𝜋𝜋𝑗𝑗, we expect 𝑏𝑏𝑢𝑢𝑢𝑢 > 𝑏𝑏𝑢𝑢𝑗𝑗 for 𝑢𝑢 ∈ {1, 2, … ,𝑈𝑈}. In the causal graph (Figure 2), 
view depends on the consumer’s interest and item popularity, forming a common effect structure (i.e., 
collider) (Pearl 2009). This structure implies that 𝑟𝑟𝑢𝑢𝑢𝑢  and 𝑏𝑏𝑢𝑢𝑢𝑢  are dependent if 𝑣𝑣𝑢𝑢𝑢𝑢  is observed, which 
provides necessary information for causality inference. For example, if user 𝑢𝑢 views unpopular item 𝑖𝑖, it can 
be concluded that the behavior is probably driven by 𝑢𝑢 ’s interest in 𝑖𝑖 . We discuss two cases to utilize 
causality information for disentangling interest and item popularity effects. 

Case 1: 𝑣𝑣𝑢𝑢𝑢𝑢 = 1, 𝑣𝑣𝑢𝑢𝑗𝑗 = 0,𝜋𝜋𝑢𝑢 < 𝜋𝜋𝑗𝑗. Since 𝑢𝑢 views 𝑖𝑖 with less item popularity effect rather than 𝑗𝑗, according to 
the common effect structure, it is probable that 𝑢𝑢’s interest in 𝑖𝑖 is higher than that in 𝑗𝑗. Therefore, the 
inequalities of causes can be derived as follows. 

𝑏𝑏𝑢𝑢𝑢𝑢 < 𝑏𝑏𝑢𝑢𝑗𝑗  𝑎𝑎𝑒𝑒𝑑𝑑 𝑟𝑟𝑢𝑢𝑢𝑢 > 𝑟𝑟𝑢𝑢𝑗𝑗 . (21) 

Case 2: 𝑣𝑣𝑢𝑢𝑢𝑢 = 1, 𝑣𝑣𝑢𝑢𝑗𝑗 = 0,𝜋𝜋𝑢𝑢 > 𝜋𝜋𝑗𝑗. As 𝑢𝑢 views an item with more item popularity effect, we cannot infer the 
relationship between 𝑢𝑢’s interests in 𝑖𝑖 and 𝑗𝑗. Hence, only the inequality of item popularity effect can be 
derived, that is, 

𝑏𝑏𝑢𝑢𝑢𝑢 > 𝑏𝑏𝑢𝑢𝑗𝑗 . (22) 

Note that the proxy variable may be inconsistent with item popularity effects in practical use due to the 
error of variable construction, along with behavior being probabilistic. Hence, to achieve a robust inference, 
the above established inequalities are not regarded as constraints but incorporated into the objective 
function. The loss function of disentangling interest and item popularity effect is formulated as 

ℒ𝑟𝑟𝑏𝑏 = −��𝕀𝕀�𝑣𝑣𝑢𝑢𝑢𝑢 = 1, 𝑣𝑣𝑢𝑢𝑗𝑗 = 0� �
𝕀𝕀�𝜋𝜋𝑢𝑢 < 𝜋𝜋𝑗𝑗� �logΛ�𝑟𝑟𝑢𝑢𝑢𝑢 − 𝑟𝑟𝑢𝑢𝑗𝑗� + logΛ�𝑏𝑏𝑢𝑢𝑗𝑗 − 𝑏𝑏𝑢𝑢𝑢𝑢��

+𝕀𝕀�𝜋𝜋𝑢𝑢 > 𝜋𝜋𝑗𝑗�logΛ�𝑏𝑏𝑢𝑢𝑢𝑢 − 𝑏𝑏𝑢𝑢𝑗𝑗�
�

(𝑢𝑢,𝑗𝑗)

𝑈𝑈

𝑢𝑢=1

. (23) 

Disentangling interest and conformity effect. Let 𝛿𝛿 = (𝛿𝛿1,𝛿𝛿2, … , 𝛿𝛿𝐼𝐼)𝑇𝑇 be the proxy variable for conformity 
effect. That is, if 𝛿𝛿𝑢𝑢 > 𝛿𝛿𝑗𝑗 , we expect 𝑐𝑐𝑢𝑢𝑢𝑢 > 𝑐𝑐𝑢𝑢𝑗𝑗  for 𝑢𝑢 ∈ {1, 2, … ,𝑈𝑈}. Nevertheless, disentangling 𝑟𝑟𝑢𝑢𝑢𝑢  and 𝑐𝑐𝑢𝑢𝑢𝑢  is 
more challenging than disentangling 𝑟𝑟𝑢𝑢𝑢𝑢 and 𝑏𝑏𝑢𝑢𝑢𝑢 because of the triangle structure in Figure 1. When we focus 
on a single behavior, the inequalities of causes cannot be derived. For example, if we study the circumstance 
that 𝑎𝑎𝑢𝑢𝑢𝑢 = 1,𝑎𝑎𝑢𝑢𝑗𝑗 = 0, the causality cannot be identified directly. It may be possible that 𝑢𝑢 has not viewed 𝑗𝑗 
(i.e., 𝑣𝑣𝑢𝑢𝑗𝑗 = 0), where there is no information of conformity; or it could be that 𝑢𝑢 purchases 𝑖𝑖 directly after 
view (i.e., 𝑧𝑧𝑢𝑢𝑗𝑗 = 1). Consequently, we cannot infer the inequalities of causes due to different decision 
mechanisms. Essentially, the property of the common effect is decision-path-dependent. Causality 
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information can be identified with respect to (𝑎𝑎𝑢𝑢𝑢𝑢 = 1,𝑎𝑎𝑢𝑢𝑗𝑗 = 0) if and only if both 𝑣𝑣𝑢𝑢𝑢𝑢 = 𝑣𝑣𝑢𝑢𝑗𝑗 = 1 and 𝑠𝑠𝑢𝑢𝑢𝑢 =
𝑠𝑠𝑢𝑢𝑗𝑗 = 0 hold, i.e., both 𝑖𝑖 and 𝑗𝑗 are considered by 𝑢𝑢 through the add-to-cart decision path. 

Decision path dependence further brings a negative sample attribution problem to model training that some 
negative sample cases are ambiguous because they depend on latent variables. Specifically, as shown in 
Figure 3, a (𝑢𝑢, 𝑗𝑗) pair (i.e., 𝑢𝑢 views 𝑗𝑗 without add-to-cart or purchase) can be the negative case of a (𝑢𝑢, 𝑖𝑖) pair 
(i.e., 𝑢𝑢 purchases 𝑖𝑖 directly after view) or a (𝑢𝑢, 𝑖𝑖′) pair (i.e., 𝑢𝑢 adds 𝑖𝑖′ to cart), depending on the unobserved 
decision path choice variable 𝑠𝑠𝑢𝑢𝑗𝑗. To handle this problem, we employ the posterior probability of 𝑠𝑠𝑢𝑢𝑗𝑗 

𝑄𝑄�𝑠𝑠𝑢𝑢𝑗𝑗� ≡ 𝑃𝑃�𝑠𝑠𝑢𝑢𝑗𝑗�𝑣𝑣𝑢𝑢𝑗𝑗 = 1,𝑎𝑎𝑢𝑢𝑗𝑗 = 0, 𝑧𝑧𝑢𝑢𝑗𝑗 = 0� (24) 

to weigh the negative sample case (𝑢𝑢, 𝑗𝑗) with respect to different decision paths. Therefore, the loss 
function of disentangling interest and conformity effect can be formulated as 

ℒ𝑟𝑟𝑐𝑐 = −���
𝕀𝕀�𝑎𝑎𝑢𝑢𝑢𝑢 = 1,𝑎𝑎𝑢𝑢𝑗𝑗 = 0, 𝑣𝑣𝑢𝑢𝑢𝑢 = 𝑣𝑣𝑢𝑢𝑗𝑗 = 1, 𝑧𝑧𝑢𝑢𝑗𝑗 = 0�𝑄𝑄�𝑠𝑠𝑢𝑢𝑗𝑗 = 0�
+𝕀𝕀�𝑧𝑧𝑢𝑢𝑢𝑢 = 1, 𝑧𝑧𝑢𝑢𝑗𝑗 = 0, 𝑣𝑣𝑢𝑢𝑢𝑢 = 𝑣𝑣𝑢𝑢𝑗𝑗 = 1,𝑎𝑎𝑢𝑢𝑢𝑢 = 𝑎𝑎𝑢𝑢𝑗𝑗 = 0�𝑄𝑄�𝑠𝑠𝑢𝑢𝑗𝑗 = 1�
+𝕀𝕀�𝑧𝑧𝑢𝑢𝑢𝑢 = 1, 𝑧𝑧𝑢𝑢𝑗𝑗 = 0, 𝑣𝑣𝑢𝑢𝑢𝑢 = 𝑣𝑣𝑢𝑢𝑗𝑗 = 1,𝑎𝑎𝑢𝑢𝑢𝑢 = 𝑎𝑎𝑢𝑢𝑗𝑗 = 1�

�
(𝑢𝑢,𝑗𝑗)

𝑈𝑈

𝑢𝑢=1

× �
𝕀𝕀�𝛿𝛿𝑢𝑢 < 𝛿𝛿𝑗𝑗� �log𝛬𝛬�𝑟𝑟𝑢𝑢𝑢𝑢 − 𝑟𝑟𝑢𝑢𝑗𝑗� + log𝛬𝛬�𝑐𝑐𝑢𝑢𝑗𝑗 − 𝑐𝑐𝑢𝑢𝑢𝑢��

+𝕀𝕀�𝛿𝛿𝑢𝑢 > 𝛿𝛿𝑗𝑗�log𝛬𝛬�𝑐𝑐𝑢𝑢𝑢𝑢 − 𝑐𝑐𝑢𝑢𝑗𝑗�
� . (25)

 

We integrate the three loss functions with a multi-task learning framework. The objective function to be 
minimized is 

ℒ = ℒ𝑏𝑏𝑏𝑏ℎ𝑎𝑎𝑣𝑣𝑢𝑢𝑎𝑎𝑟𝑟 + 𝜆𝜆1ℒ𝑟𝑟𝑏𝑏 + 𝜆𝜆2ℒ𝑟𝑟𝑐𝑐 , (26) 

where 𝜆𝜆1 > 0 and 𝜆𝜆2 > 0 are hyperparameters controlling the weights of the causality learning tasks. 

 

Figure 3.  Negative Sample Attribution Problem 

Model Inference 

Since the latent variable that indicates decision path choice, 𝑠𝑠𝑢𝑢𝑢𝑢, leads to a log-sum structure in ℒ𝑏𝑏𝑏𝑏ℎ𝑎𝑎𝑣𝑣𝑢𝑢𝑎𝑎𝑟𝑟 
(Equation (20)), we employ an EM algorithm for parameter learning. Specifically, in the E-step, we infer 
the posterior probability of 𝑠𝑠𝑢𝑢𝑢𝑢. In the M-step, we first derive the upper bound of the log-sum structure in 
ℒ𝑏𝑏𝑏𝑏ℎ𝑎𝑎𝑣𝑣𝑢𝑢𝑎𝑎𝑟𝑟  by Jensen’s inequality. Then, the upper bound of the loss function ℒ  (Equation (26)) can be 
minimized. 

Consumers’ purchase behavior can be predicted given the estimated parameters. For item 𝑖𝑖 that has not 
been purchased by user 𝑢𝑢, if 𝑢𝑢 has not viewed 𝑖𝑖 yet (i.e., 𝑣𝑣𝑢𝑢𝑢𝑢 = 0), the purchase probability will be 

𝑃𝑃�𝑣𝑣𝑢𝑢𝑢𝑢=1 = Λ�𝑢𝑢𝑢𝑢𝑣𝑣 �𝜃𝜃�𝑢𝑢𝑢𝑢Λ�𝑢𝑢𝑢𝑢𝑣𝑣𝑣𝑣 + �1 − 𝜃𝜃�𝑢𝑢𝑢𝑢�Λ�𝑢𝑢𝑢𝑢𝑎𝑎 Λ�𝑢𝑢𝑢𝑢𝑎𝑎𝑣𝑣�, 𝑖𝑖𝑖𝑖 𝑣𝑣𝑢𝑢𝑢𝑢 = 0, (27) 

where ∙ ̂represents the estimated result. 

If 𝑢𝑢 has viewed 𝑖𝑖 but has not added 𝑖𝑖 to cart (i.e., 𝑣𝑣𝑢𝑢𝑢𝑢 = 1,𝑎𝑎𝑢𝑢𝑢𝑢 = 0), the purchase probability will be 

𝑃𝑃�𝑣𝑣𝑢𝑢𝑢𝑢=1 = 𝜃𝜃�𝑢𝑢𝑢𝑢Λ�𝑢𝑢𝑢𝑢𝑣𝑣𝑣𝑣 + �1 − 𝜃𝜃�𝑢𝑢𝑢𝑢�Λ�𝑢𝑢𝑢𝑢𝑎𝑎 Λ�𝑢𝑢𝑢𝑢𝑎𝑎𝑣𝑣, 𝑖𝑖𝑖𝑖 𝑣𝑣𝑢𝑢𝑢𝑢 = 1,𝑎𝑎𝑢𝑢𝑢𝑢 = 0. (28) 
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Finally, if 𝑢𝑢 has added 𝑖𝑖 to cart (i.e., 𝑎𝑎𝑢𝑢𝑢𝑢 = 1), 

𝑃𝑃�𝑣𝑣𝑢𝑢𝑢𝑢=1 = Λ�𝑢𝑢𝑢𝑢𝑎𝑎𝑣𝑣, 𝑖𝑖𝑖𝑖 𝑎𝑎𝑢𝑢𝑢𝑢 = 1. (29) 

Causal Recommendation 

Conventional RSs research commonly assumes the environment to be stationary to generate 
recommendation policy. That is, conventional RSs do not consider entangled causes of consumer behaviors 
but treat them as a whole; consequently, predictions are made based on the entangled causes. However, the 
stationary assumption is too strong to hold in the constantly changing marketplace, because the distribution 
of the item popularity as well as conformity can differ from one scenario to another. For example, if the 
recommendation is interest-oriented, only consumers’ interest should drive behaviors in test scenario; 
therefore, predictions made with entangled causes will work poorly in practice. 

Unlike conventional works, our work can generate desirable recommendation policies to accommodate 
different scenarios. To achieve the target, counterfactual inference should be made according to interest, 
popularity, and conformity effects in a particular scenario to form casual recommendations. That is, given 
the observed digital footprints of consumers (i.e., actual data), we need to infer what the purchase 
probability would be (i.e., counterfactual outcomes) if causes  (i.e., antecedent) were changed (Pearl et al. 
2016). With the EM algorithm, the parameters of the model have been estimated given the actual data. 
Based on the learnt model, the counterfactual purchase probability can be computed in a way similar to 
intervention in causes. Since the causes are root nodes in casual graph, the operation can be conducted 
through directly modifying causes, which is a trivial case of backdoor criterion (Pearl et al. 2016). 
Specifically, suppose the effects of item popularity and conformity are 𝑏𝑏𝑢𝑢𝑢𝑢′  and 𝑐𝑐𝑢𝑢𝑢𝑢′  in RS’s serving scenario, 
the counterfactual purchase probability will be obtained by setting 

𝑏𝑏�𝑢𝑢𝑢𝑢 = 𝑏𝑏𝑢𝑢𝑢𝑢′  𝑎𝑎𝑒𝑒𝑑𝑑 �̂�𝑐𝑢𝑢𝑢𝑢 = 𝑐𝑐𝑢𝑢𝑢𝑢′ . (30) 

Particularly, when the recommendation policy is interest-oriented, the effects of item popularity and 
conformity need to be eliminated, that is, 

𝑏𝑏�𝑢𝑢𝑢𝑢 = 𝑏𝑏𝑢𝑢𝑢𝑢′ = 0 𝑎𝑎𝑒𝑒𝑑𝑑 �̂�𝑐𝑢𝑢𝑢𝑢 = 𝑐𝑐𝑢𝑢𝑢𝑢′ = 0, 𝑖𝑖𝑡𝑡𝑟𝑟 𝑎𝑎𝑑𝑑𝑑𝑑 (𝑢𝑢, 𝑖𝑖). (31) 

Thus, the purchase likelihood driven by interest can be derived by putting Equation (31) into Equation (27)-
(29), which can be used for ranking the top-n list for the focal consumer. Note that such a task is comparable 
to the debiasing-oriented tasks (Zheng et al. 2021), which will be included as baselines in the evaluation. 

Evaluation 

Extensive experiments are conducted on a real-world dataset to evaluate the performance of the proposed 
method (DIPC). We seek to answer the following three experimental questions. EQ1: How does DIPC 
perform compared with the state-of-the-art methods in terms of purchase behavior prediction? EQ2: Can 
DIPC outperform the state-of-the-art methods in terms of learning consumers’ interests? EQ3: What are 
the roles of modeling view and add-to-cart in the casual recommendation? 

Dataset 

We use a real-world dataset Beibei (available at https://github.com/chenchongthu/EHCF) for evaluation, 
which records multiple digital footprints including view, add-to-cart, and purchase during the time period 
from 2017/11/25 to 2017/12/03. The data are preprocessed to retain users with more than 20 records of 
purchase. The descriptive statistics are shown in Table 2. 

#users #items #views # add-to-carts # purchases # purchases after 
add-to-cart 

3,152 7,024 398,186 138,697 88,418 86,684 

Table 2. Descriptive Statistics of Beibei dataset 
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To evaluate the purchase behavior prediction performance as is described in EQ1, the purchase data are 
split at 4:1 randomly for training and testing. For the training data, we include the view and add-to-cart 
records of the users for training. That is, purchase data for testing follow the same distribution as that in 
training data. Hyperparameters 𝜆𝜆1, 𝜆𝜆2, and common ones including training epochs and learning rate are 
tuned on the training set by cross-validation. 

For EQ2 and EQ3 concerning causality learning, an ideal test set is a collection of consumers’ genuine 
interests obtained with a survey or other experimental tools. However, such data are scarce due to the 
considerable costs of data collection. Therefore, we employ intervened purchase data for validation and 
testing, which is widely adopted in the out-of-sample tests of causal recommendation methods (Bonner and 
Vasile 2018, Liang et al. 2016a, Wei et al. 2021, Zheng et al. 2021). The intervened data seek to reweigh the 
observational data to mimic the outcome that is not driven by side factors, thus providing a debiased testbed 
to evaluate the performance of causal recommendation. Following previous works (Liang et al. 2016a, 
Bonner and Vasile 2018, Zheng et al. 2021), we construct the intervened data that works for multiple types 
of digital footprints as follows. First, we sample 𝜇𝜇% of view records with equal probability in terms of items. 
The sampled view records can be regarded as behaviors generated under a random policy (Bonner and 
Vasile 2018). Since consumers are not exposed to popular products with a higher probability in the sampled 
data, the side effect brought by item popularity is reduced. Subsequently, add-to-cart and purchase records 
are filtered correspondingly, that is, the subsequent behavior records of non-sampled views will be 
eliminated. Then, 𝜇𝜇% of the remaining add-to-cart records are sampled in a similar way to get an add-to-
cart set under the random policy, along with the purchase records that happened after the add-to-cart being 
filtered once again. As consumers do not follow public decisions in the new samples like that in the original 
add-to-cart records, the side effect of conformity on add-to-cart is decreased. Finally, 𝜇𝜇% of the remaining 
purchase records are sampled with the same strategy to form the intervened purchase data. We tune the 
parameter 𝜇𝜇 to obtain a 7:1:2 split for the training set (observational), validation set (intervened), and test 
set (intervened) of purchase records, where the validation set and test set are balanced with little item 
popularity effect and conformity effect, following a distribution different from the purchase data for 
training. View and add-to-cart records are used for training as well. Hyperparameters are tuned according 
to the performance on the validation set and then used for testing. 

Generally, the number of views on a product reflects its popularity. A large number of views usually lead to 
a significant item popularity effect. Thus, the number of views can be a natural proxy variable for the item 
popularity effect (i.e., 𝜋𝜋). Considering that the total sales of a product show other consumers’ purchase 
decisions, indicating the effect of social influence, we adopt the number of purchases as the proxy variable 
for the conformity effect (i.e., 𝛿𝛿). 

Baselines and Metrics 

To comprehensively evaluate the performance of DIPC in terms of both modeling multiple digital footprints 
and learning consumers’ interests (or equivalently, debiasing), we compare DIPC with four groups of 
baselines, which are summarized in Table 3, the details of which are omitted due to space limit.  

 Purchase-based Multiple-digital-footprints-based 

Without 
debiasing 
mechanism 

PMF (Mnih and Salakhutdinov 
2007) 

NMTR (Gao et al. 2019) 
(Information used: view, add-to-cart, purchase.) 
EHCF (Chen et al. 2020a) 
(Information used: view, add-to-cart, purchase.) 

With 
debiasing 
mechanism 

ExpoMF (Liang et al. 2016b) 
(Bias considered: item popularity.) 
CausE (Bonner and Vasile 2018) 
(Bias considered: conformity.) 
DICE (Zheng et al. 2021) 
(Bias considered: conformity.) 

IPS-Pop (Saito et al. 2020) 
(Information used: view, purchase. 
Bias considered: item popularity.) 
IPS-Logit (Schnabel et al. 2016)  
(Information used: view, purchase. 
Bias considered: item popularity.) 
IPS-1BITMC (Ma and Chen 2019) 
(Information used: view, purchase. 
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Bias considered: item popularity.) 

Table 3. Baseline Methods for Performance Comparison 

A top-n list can be built for each user by ranking items according to the predictions. For EQ1 concerning 
purchase behavior, all methods make predictions following a conventional manner that assumes stationary 
causes or biases, and DIPC predicts purchase likelihood according to Equation (27)-(29). In terms of EQ2 
where the performance of interest learning is concerned, methods with a debiasing mechanism can generate 
predictions by eliminating bias, and DIPC predicts the likelihood through setting item popularity effect and 
conformity effect as Equation (31). Commonly used ranking-based metrics including precision (P), mean 
average precision (MAP), DCG, and NDCG are adopted for performance measurement.  

Results 

EQ1: The results of purchase behavior prediction on Beibei are shown in Table 4, where DIPC outperforms 
all baseline methods, showcasing the effectiveness of in-sample fitness that the behavioral patterns 
embedded in multiple digital footprints are well captured. Since purchase-based baselines and IPS methods 
cannot utilize the full information of data, their predictions of purchase behaviors are hampered. NMTR 
performs poorly because its assumed cascading relationship does not hold practically, resulting in model 
misspecification. The performance of EHCF is inferior to DIPC as well, which can be attributed to that 
EHCF pays much attention to the correlations of multiple behaviors while neglecting some sequence 
information. 

Methods P@5 MAP@5 NDCG@5 P@10 MAP@10 NDCG@10 

PMF 0.1295 0.2438 0.1486 0.1040 0.2422 0.1591 

ExpoMF 0.0998 0.1844 0.1117 0.0849 0.1871 0.1232 

CausE 0.0631 0.1383 0.0739 0.0583 0.1469 0.0870 

DICE 0.1065 0.1986 0.1195 0.0918 0.2013 0.1334 

NMTR 0.1688 0.3163 0.1942 0.1381 0.3120 0.2153 

EHCF 0.3444 0.5956 0.4174 0.2410 0.5659 0.4298 

IPS-Pop 0.1440 0.2290 0.1487 0.1503 0.2491 0.2067 

IPS-Logit 0.0708 0.1426 0.0767 0.0694 0.1594 0.1008 

IPS-1BITMC 0.2919 0.4835 0.3383 0.2323 0.4606 0.3769 

DIPC 0.4674 0.6647 0.5414 0.3821 0.6203 0.6280 

Table 4. Results of Purchase Behavior Prediction 

EQ2: To evaluate the performance of learning consumer’s interest, intervened validation set and test set 
with little item popularity effect and conformity effect are employed. The comparison results on Beibei are 
shown in Table 5, where the performance of DIPC surpasses the others to a large extent. The superior 
performance can be attributed to the proper disentanglement of different causes. Firstly, baselines without 
a debiasing mechanism can only accomplish the task through tuning hyperparameters according to the 
validation set, which barely results in satisfactory performance. Secondly, baselines with a debiasing 
mechanism in Table 3 cannot model view, add-to-cart, and purchase simultaneously. Less information also 
makes the methods hard to capture interests. Failing to utilize abundant add-to-cart records, IPS methods 
performs rather poorly, while CausE gets the worst performance due to the extreme sparsity of its training 
data. Thirdly, the causality learning mechanism of DIPC, which disentangles causes with causal graph, is 
superior. Since the excellent performance of DIPC may be owed to both more information used and the 
causality learning mechanism, we carry out a finer-grained inspection in EQ3. 

Methods P@5 MAP@5 NDCG@5 P@10 MAP@10 NDCG@10 

PMF 0.0085 0.0208 0.0119 0.0070 0.0234 0.0141 
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ExpoMF 0.0122 0.0273 0.0153 0.0113 0.0323 0.0196 

CausE 0.0039 0.0088 0.0044 0.0038 0.0111 0.0059 

DICE 0.0139 0.0327 0.0176 0.0122 0.0376 0.0215 

NMTR 0.0190 0.0418 0.0221 0.0182 0.0484 0.0271 

EHCF 0.0314 0.0706 0.0374 0.0280 0.0791 0.0445 

IPS-Pop 0.0736 0.1610 0.0890 0.0685 0.1753 0.1108 

IPS-Logit 0.0636 0.1311 0.0719 0.0637 0.1485 0.0953 

IPS-1BITMC 0.0615 0.1248 0.0689 0.0624 0.1431 0.0924 

DIPC 0.2908 0.4525 0.3332 0.2774 0.4331 0.4301 

Table 5. Results of Consumers’ Interest Learning 

EQ3: The effect of modeling auxiliary digital footprints (i.e., view and add-to-cart) on interest learning is 
analyzed with an information ablation study. We modify DIPC to take into account only view and purchase 
(DIPC-VZ) or to model add-to-cart and purchase (DIPC-AZ). Results in Table 6 indicate that a lack of either 
view or add-to-cart information harms the performance. The degree of performance deterioration depends 
on the amount of information ablated. Therefore, as shown by the results on Beibei, removing a large 
amount of add-to-cart records leads to a sharp decrease in performance. 

Furthermore, it should be noted that DIPC-VZ utilizes the same information as IPS methods but achieves 
a better performance of learning interest, which manifests the superiority of the causality learning 
mechanism (i.e., disentangled representation learning with causal graph) adopted by our method. 

 P@5 MAP@5 NDCG@5 P@10 MAP@10 NDCG@10 

DIPC-VZ 0.0815 0.1636 0.0938 0.0792 0.1802 0.1220 

DIPC-AZ 0.2680 0.4290 0.3069 0.2619 0.4127 0.4027 

DIPC 0.2908 0.4525 0.3332 0.2774 0.4331 0.4301 

Table 6. Results of Information Ablation Study 

Remark. With the proposed model, we can estimate the causes that drive consumer behaviors and the 
weights of causes in consumers’ decisions. Since these parameters indicate prominent factors driving 
consumer behaviors, retailers can develop effective marketing strategies to nudge consumers. For example, 
if item popularity effect is shown to play an important role in a consumer’s shopping journey, the retailer 
can intervene through personalized advertisements to enhance purchase probability, the effect of which can 
be estimated with the counterfactual evaluation. Our model can also benefit consumers by providing 
summaries of their behavioral biases with severity in decision making, which can help consumers become 
conscious of side causes and pay more attention to genuine interest. Moreover, EC platforms can generate 
casual recommendations to accommodate different needs with our method.  

Discussion 

This section further examines the necessity of considering item popularity and conformity. To figure it out, 
several alternative causal graphs are constructed with DIPC being adapted accordingly, which are 
illustrated in Figure 4. DIPC-𝑟𝑟 assumes all behaviors (i.e., view, add-to-cart, and purchase) are completely 
driven by consumers’ interests. DIPC-𝑟𝑟𝑐𝑐 removes item popularity effect from DIPC, i.e., view is motivated 
by interest only. DIPC-𝑟𝑟𝑏𝑏 instead omits the conformity effect, which modifies add-to-cart and purchase 
modeling to make these behaviors totally depend on interest. DIPC-𝑟𝑟𝑏𝑏𝑖𝑖𝑎𝑎𝑠𝑠 assumes that item popularity 
effect and conformity effect are the same while the weight on causes of different decisions can be different.  
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(a) DIPC-𝑟𝑟 (b) DIPC-𝑟𝑟𝑐𝑐 (c) DIPC-𝑟𝑟𝑏𝑏 (d) DIPC-𝑟𝑟𝑏𝑏𝑖𝑖𝑎𝑎𝑠𝑠 

Figure 4.  Alternative Causal Graphs 

To evaluate the causality learning performance of these model versions with different assumptions, we 
conduct experiments on Beibei. The results in Table 7 show that omitting either item popularity effect or 
conformity effect worsens the performance of learning consumer interests, demonstrating the necessity of 
considering both effects. Moreover, omitting the conformity effect incurs a larger decrease in performance 
than omitting the item popularity effect, indicating the relative importance of focusing on conformity. Such 
a phenomenon can be attributed to that conformity works in the pre-purchase and purchase stages and 
influences purchase in a more direct way. In contrast, item popularity affects view in the need recognition 
stage, which is far from making a purchase. Though consumers cannot buy products they have not viewed, 
their interests can motivate the exposure to alleviate the influence of item popularity. In addition, without 
differentiating item popularity effect and conformity effect, the performance of DIPC-𝑟𝑟𝑏𝑏𝑖𝑖𝑎𝑎𝑠𝑠 becomes poorer 
than that of DIPC due to model misspecification. Therefore, the causality behind consumer behaviors 
recognized in this study is further confirmed. 

Methods P@5 MAP@5 NDCG@5 P@10 MAP@10 NDCG@10 

DIPC-𝑟𝑟 0.1683 0.2423 0.1730 0.2169 0.2833 0.2927 

DIPC-𝑟𝑟𝑐𝑐 0.2474 0.3878 0.2763 0.2514 0.3821 0.3758 

DIPC-𝑟𝑟𝑏𝑏 0.1908 0.2829 0.2013 0.2259 0.3109 0.3146 

DIPC-𝑟𝑟𝑏𝑏𝑖𝑖𝑎𝑎𝑠𝑠 0.2549 0.3984 0.2851 0.2558 0.3881 0.3827 

DIPC 0.2908 0.4525 0.3332 0.2774 0.4331 0.4301 

Table 7. Results of Different Model Versions on Consumer’s Interest Learning 

Conclusion 

In this study, we design a causal recommendation method, i.e., DIPC, based on cause disentanglement at 
various consumption stages. Referring to related theories, interest and item popularity are recognized as 
causes driving consumer behaviors in the need recognition stage, while behaviors in the pre-purchase and 
purchase stages are assumed to be motivated by interest and conformity. A causal graph is constructed with 
which disentangled representation learning is employed. To rigorously evaluate the performance of the 
DIPC, extensive experiments are conducted on a real-world dataset with carefully designed intervention in 
terms of modeling multiple digital footprints and causality learning. The results show DIPC outperforms 
all baselines significantly and possesses good interpretability, demonstrating the superiority of the 
proposed causal recommendation method. The causality assumption of DIPC is further checked to be 
rational by fitting consumers’ behavior data to alternative causal graphs. Our work contributes to the 
research of RS as follows. Theoretically, we analyze consumers’ behavioral mechanisms in the shopping 
journey, revealing the causality behind consumers’ multiple implicit feedback. Methodologically, our work 
is one of the first studies to disentangle the causes behind consumers’ implicit feedback at various stages 
and provide interpretable recommendations. We have handled the challenging triangle-structured digital 
footprints of consumers, providing a foundational component for modeling consumers’ flexible shopping 
journey. Therefore, the proposed method broadens the way for modeling more types of consumer implicit 
feedback. On the other hand, the causality learning performance of our model is robustly excellent even if 
the information of consumers’ implicit feedback is highly restricted. Moreover, a consolidated framework 
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is designed to comprehensively evaluate the proposed method in terms of both modeling multiple digital 
footprints and causality learning. We also offer several implications for business practice. With the 
introduction of a causal graph, our method provides insights from the perspectives of both consumers and 
retailers. For consumers, the summary of the driving factors of one’s purchase could help mitigate 
behavioral biases. For retailers, the proposed method can tell the more prominent factors in driving 
consumers’ purchase decisions, which can be used to nudge consumers in a personalized manner. 
Moreover, the shortcoming of conventional RSs making predictions based on entangled causes is overcome, 
such that EC platforms can generate casual recommendations to accommodate different scenarios with the 
proposed method. Our work is not without limitations, which call for future research. First, we only consider 
three primary types of implicit feedback in our model, while neglecting secondary ones. Based on our 
method, more types of implicit feedback can be incorporated with more available information as proxy 
variables. Second, we only have the dataset before COVID-19, it would be interesting to further look into 
the change in consumer behavior before and after the pandemic. 

Acknowledgements 

This work was partly supported by the National Natural Science Foundation of China (Grant No. 72101007), 
Tsinghua University Initiative Scientific Research Program (Grant No. 2019THZWYX08),  the MOE Project 
of Key Research Institute of Humanities and Social Sciences at Universities (17JJD630006),  and the 
Tsinghua University Research Center for Interactive Technology Industry under (Grant No. 
RCITI2022T002). 

References 

Akerlof GA (1991) Procrastination and obedience. The American Economic Review 81(2):1-19. 
Baeza-Yates R (2018) Bias on the web. Communications of the ACM 61(6):54-61. 
Beatty SE, Ferrell ME (1998) Impulse buying: Modeling its precursors. Journal of retailing 74(2):169-191. 
Bengio Y, Courville A, Vincent P (2013) Representation learning: A review and new perspectives. IEEE 

transactions on pattern analysis and machine intelligence 35(8):1798-1828. 
Bonner S, Vasile F (2018) Causal embeddings for recommendation. Proceedings of the 12th ACM 

conference on recommender systems, 104-112. 
Brynjolfsson E, Smith MD (2000) Frictionless commerce? a comparison of Internet and conventional 

retailers. Management science 46(4):563-585. 
Chen C, Zhang M, Zhang Y, Ma W, Liu Y, Ma S (2020a) Efficient heterogeneous collaborative filtering 

without negative sampling for recommendation. Proceedings of the AAAI Conference on Artificial 
Intelligence, volume 34, 19-26. 

Chen X, Li L, Pan W, Ming Z (2020b) A survey on heterogeneous one-class collaborative filtering. ACM 
Transactions on Information Systems (TOIS) 38(4):1-54. 

Ciampaglia GL, Nematzadeh A, Menczer F, Flammini A (2018) How algorithmic popularity bias hinders or 
promotes quality. Scientific reports 8(1):1-7. 

Dowling K, Guhl D, Klapper D, Spann M, Stich L, Yegoryan N (2020) Behavioral biases in marketing. 
Journal of the Academy of Marketing Science 48(3):449-477. 

Fishburn PC (1970) Utility theory for decision making. Technical report, Research analysis corp McLean 
VA. 

Fleder D, Hosanagar K (2009) Blockbuster culture's next rise or fall: The impact of recommender systems 
on sales diversity. Management science 55(5):697-712. 

Gao C, He X, Gan D, Chen X, Feng F, Li Y, Chua TS, Yao L, Song Y, Jin D (2019) Learning to recommend 
with multiple cascading behaviors. IEEE transactions on knowledge and data engineering 
33(6):2588-2601. 

Ghose A, Goldfarb A, Han SP (2013) How is the mobile internet different? search costs and local activities. 
Information Systems Research 24(3):613-631. 

Godes D, Silva JC (2012) Sequential and temporal dynamics of online opinion. Marketing Science 
31(3):448-473. 

Hu N, Pavlou PA, Zhang JJ (2017) On self-selection biases in online product reviews. MIS Q. 41(2):449-
471. 



 Personalized Recommendation through Disentangled Representation Learning 
  

 Forty-Third International Conference on Information Systems, Copenhagen 2022
 17 

Iyer GR, Blut M, Xiao SH, Grewal D (2020) Impulse buying: a meta-analytic review. Journal of the 
Academy of Marketing Science 48(3):384-404. 

Jonas E, Schulz-Hardt S, Frey D, Thelen N (2001) Confirmation bias in sequential information search after 
preliminary decisions: an expansion of dissonance theoretical research on selective exposure to 
information. Journal of personality and social psychology 80(4):557. 

Karaman H (2021) Online review solicitations reduce extremity bias in online review distributions and 
increase their representativeness. Management Science 67(7):4420-4445. 

Koren Y, Bell R, Volinsky C (2009) Matrix factorization techniques for recommender systems. Computer 
42(8):30-37. 

Lee L, Inman JJ, Argo JJ, Böttger T, Dholakia U, Gilbride T, Van Ittersum K, Kahn B, Kalra A, Lehmann 
DR, et al. (2018) From browsing to buying and beyond: The needs-adaptive shopper journey model. 
Journal of the Association for Consumer Research 3(3):277-293. 

Liang D, Charlin L, Blei DM (2016a) Causal inference for recommendation. Causation: Foundation to 
Application, Workshop at UAI. AUAI. 

Liang D, Charlin L, McInerney J, Blei DM (2016b) Modeling user exposure in recommendation. 
Proceedings of the 25th international conference on World Wide Web, 951-961. 

Ma J, Zhou C, Cui P, Yang H, Zhu W (2019) Learning disentangled representations for recommendation. 
Advances in neural information processing systems 32. 

Ma W, Chen GH (2019) Missing not at random in matrix completion: The effectiveness of estimating 
missingness probabilities under a low nuclear norm assumption. Advances in Neural Information 
Processing Systems 32. 

Mnih A, Salakhutdinov RR (2007) Probabilistic matrix factorization. Advances in neural information 
processing systems 20. 

Muchnik L, Aral S, Taylor SJ (2013) Social influence bias: A randomized experiment. Science 
341(6146):647-651. 

Nikolov D, Lalmas M, Flammini A, Menczer F (2019) Quantifying biases in online information exposure. 
Journal of the Association for Information Science and Technology 70(3):218-229. 

Pearl J (2009) Causality (Cambridge university press). 
Pearl J, Glymour M, Jewell NP (2016) Causal Inference in Statistics: A Primer (John Wiley & Sons). 
Saito Y, Yaginuma S, Nishino Y, Sakata H, Nakata K (2020) Unbiased recommender learning from missing-

not-at-random implicit feedback. Proceedings of the 13th International Conference on Web Search and 
Data Mining, 501-509. 

Schnabel T, Swaminathan A, Singh A, Chandak N, Joachims T (2016) Recommendations as treatments: 
Debiasing learning and evaluation. international conference on machine learning, 1670-1679 (PMLR). 

Sun T, Yuan Z, Li C, Zhang K, Xu J, et al. (2021) The value of personal data in internet commerce: A high-
stake field experiment on data regulation policy. Technical report. 

Suter R, Miladinovic D, Sch�olkopf B, Bauer S (2019) Robustly disentangled causal mechanisms: 
Validating deep representations for interventional robustness. International Conference on Machine 
Learning, 6056-6065 (PMLR). 

Wang M, Gong M, Zheng X, Zhang K (2018) Modeling dynamic missingness of implicit feedback for 
recommendation. Advances in neural information processing systems 31. 

Wang W, Feng F, He X, Wang X, Chua TS (2021) Deconfounded recommendation for alleviating bias 
amplification. Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data 
Mining, 1717-1725. 

Wang X, Jin H, Zhang A, He X, Xu T, Chua TS (2020) Disentangled graph collaborative filtering. 
Proceedings of the 43rd international ACM SIGIR conference on research and development in 
information retrieval, 1001-1010. 

Wang X, Zhang R, Sun Y, Qi J (2019) Doubly robust joint learning for recommendation on data missing not 
at random. International Conference on Machine Learning, 6638-6647 (PMLR). 

Wei T, Feng F, Chen J, Wu Z, Yi J, He X (2021) Model-agnostic counterfactual reasoning for eliminating 
popularity bias in recommender system. Proceedings of the 27th ACM SIGKDD Conference on 
Knowledge Discovery & Data Mining, 1791-1800. 

Zhao Z, Cheng Z, Hong L, Chi EH (2015) Improving user topic interest profiles by behavior factorization. 
Proceedings of the 24th International Conference on World Wide Web, 1406-1416. 

Zheng Y, Gao C, Li X, He X, Li Y, Jin D (2021) Disentangling user interest and conformity for 
recommendation with causal embedding. Proceedings of the Web Conference 2021, 2980-2991. 


	Personalized Recommendation through Disentangled Representation Learning of Consumers’ Multiple Digital Footprints
	Recommended Citation

	Personalized Recommendation through Disentangled Representation Learning of Consumers’ Multiple Digital Footprints
	Introduction
	Related Work
	Behavioral Biases in Consumers’ Online Shopping Journey
	Debiasing Recommendation Methods
	IPS Approach
	Exposure-based Model
	Causal Embedding Approach

	Recommendation with Multiple Implicit Feedback

	Model
	Model Description
	Causes
	Consumer Behaviors
	Causal Embedding Learning

	Model Inference
	Causal Recommendation

	Evaluation
	Dataset
	Baselines and Metrics
	Results

	Discussion
	Conclusion
	Acknowledgements
	References

