2 research outputs found

    Data_Sheet_1_Metabolomics-based study of the effect of dietary N-carbamoylglutamic acid addition to heifers in late pregnancy on newborn calves.docx

    No full text
    It has been demonstrated that supplementing late-gestation cow diets with NCG (N-carbamoylglutamic acid) increases the serum protein level, boosts immunological function, and increases the birth weight of the calves. However, the underlying mechanism remains unclear. In this experiment, 30 late-gestation Angus heifers almost at same conditions were chosen for this experiment. They were randomly divided into two groups of 15 cows each. A basal diet was provided to the control group, and 30 g/(d-head) of NCG was added to the basal diet of the test group (NCG group). Blood samples were collected from the jugular vein after birth and before the end (when the calves were 90 days old) of the experiment for plasma metabolomics analysis. The metabolomics analysis identified 53 metabolites between the NCG group and control group, with 40 significantly up-regulated and 13 significantly down-regulated. Among them, 33 lipids and lipid-like molecules made up 57.89% of all the metabolites that were found. Thirty-three metabolic pathways enriched by metabolites showed p.adjust <0.05, among which glycerophospholipid and sphingolipid metabolism pathways were the most abundant. In conclusion, the addition of NCG in late-gestation cows appears to primarily affect calf growth and development through the regulation of phospholipid metabolism, which plays a role in nerve conduction, brain activity, and cell metabolism and function. This study provides valuable insights into how nutritional supplementation by late-gestation cows might improve the growth and development of newborn calves.</p

    Data_Sheet_1_Dynamic changes of rumen bacteria and their fermentative ability in high-producing dairy cows during the late perinatal period.docx

    No full text
    BackgroundHigh-producing dairy cows face varying degrees of metabolic stress and challenges during the late perinatal period, resulting in ruminal bacteria abundance and their fermentative ability occurring as a series of changes. However, the dynamic changes are still not clear.Aims/methodsTen healthy, high-producing Holstein dairy cows with similar body conditions and the same parity were selected, and ruminal fluid from the dairy cows at postpartum 0, 7, 14, and 21 d was collected before morning feeding. 16S rRNA high-throughput sequencing, GC-MS/MS targeted metabolomics, and UPLC-MS/MS untargeted metabolomics were applied in the study to investigate the dynamic changes within 21 d postpartum.ResultsThe results displayed that the structures of ruminal bacteria were significantly altered from 0 to 7 d postpartum (R = 0.486, P = 0.002), reflecting the significantly declining abundances of Euryarchaeota and Chloroflexi phyla and Christensenellaceae, Methanobrevibacter, and Flexilinea genera (P ConclusionThe findings contribute to the decision of nutritional management and prevention of metabolic diseases in high-producing dairy cows during the late perinatal period.</p
    corecore