100 research outputs found

    Superconductivity in epitaxially grown LaVO3/KTaO3(111) heterostructures

    Full text link
    Complex oxide heterointerfaces can host a rich of emergent phenomena, and epitaxial growth is usually at the heart of forming these interfaces. Recently, a strong crystalline-orientation-dependent two-dimensional superconductivity was discovered at interfaces between KTaO3 single-crystal substrates and films of other oxides. Unexpectedly, rare of these oxide films was epitaxially grown. Here, we report the existence of superconductivity in epitaxially grown LaVO3/KTaO3(111) heterostructures, with a superconducting transition temperature of ~0.5 K. Meanwhile, no superconductivity was detected in the (001)- and (110)-orientated LaVO3/KTaO3 heterostructures down to 50 mK. Moreover, we find that for the LaVO3/KTaO3(111) interfaces to be conducting, an oxygen-deficient growth environment and a minimum LaVO3 thickness of ~0.8 nm (~ 2 unit cells) are needed.Comment: 5 figures, plus 6 supplementary figure

    Effect of Trypsin Modification on Heat Resistance and Structural Properties of Liquid Egg White during Heat Sterilization

    Get PDF
    In order to increase the pasteurization temperature and heat resistance of liquid egg white, the effect of trypsin modification on the heat resistance and structural properties of liquid egg white was investigated in this study. The sample in this study consisted of two groups: unmodified and enzyme-modified. Each group was kept at 25 ℃ (control) or sterilized at 56, 62, 68 or 72 ℃ for 3 min. The changes of heat resistance were measured by turbidity and supernatant protein content, and the structure of egg white protein was characterized by apparent viscosity, particle size, surface hydrophobicity, Fourier transform infrared (FTIR) spectroscopy, sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), and scanning electron microscopy (SEM). Trypsin modification significantly reduced egg white turbidity and increased the protein content of the supernatant (P < 0.05). As the sterilization temperature increased, the turbidity and particle size of egg white gradually increased, while the protein content of the supernatant gradually decreased. At the same sterilization temperature, the turbidity and apparent viscosity of the modified egg white were significantly lower, while the surface hydrophobicity was significantly higher (P < 0.05) and the particle size distribution was closer to the normal distribution compared with that of the unmodified egg white. Enzymatic modification could inhibit protein thermal aggregation and improve heat resistance. SEM results showed that enzymatic modification increased the surface porosity of egg white protein and the dispersity of the particles; at the same sterilization temperature the number of particles retained on the surface was higher in modified than in unmodified egg white. SDS-PAGE analysis showed that enzymatic modification promoted the degradation of large molecular mass proteins in egg white. Fourier transform infrared spectroscopy showed that at temperatures below 68 ℃, the relative content of α-helix of the modified egg white was significantly higher than that of the unmodified egg white (P < 0.05), while the relative content of random coil was significantly lower than that of the unmodified egg white. In conclusion, trypsin can effectively improve the thermal aggregation of egg white proteins during heat sterilization and improve the heat resistance of liquid egg white, which is important for expanding its sales radius

    Effect of Gradually Decreasing Photoperiod on Immune Function in Siberian Hamsters

    Get PDF
    Animals usually use photoperiod as an important environmental cue to time the year. In terms of the winter immunocompetence enhancement hypothesis, animals in the non-tropical zone would actively enhance their immune function to decrease the negative influence of stressors such as low temperature and food shortage in winter. In the present study, we mimicked the transition from summer to winter by decreasing photoperiod gradually and examined the variations of immune repsonses in Siberian hamsters (Phodopus sungorus)&nbsp; to test this hypothesis. Twenty two female adult hamsters were randomly divided into the control (12h light: 12h dark, Control, n=11) and the gradually decreasing photoperiod group (Experiment, n=11). In the experiment group, day length was decreased from 12 h: 12 h light-dark cycle to 8 h: 16 h light-dark cycle at the pace of half an hour per week. We found that gradually decreasing photoperiod had no effect on body composition (wet carcass mass, subcutaneous, retroperitoneal, mesenteric and total body fat mass) and the masses of the organs detected such as brain, heart, liver and so on in hamsters. Similarly, immunological parameters including immune organs (thymus and spleen), white blood cells and serum bacteria killing capacity indicative of innate immunity were also not influenced by gradually decreasing photoperiod, which did not support the winter immunocompetence enhancement hypothesis. However, gradually decreasing photoperiod increased phytohaemagglutinin response post-24h of PHA challenge, which supported this hypothesis. There was no correlation between cellular, innate immunity and body fat mass, suggesting that body fat was not the reasons of the changes of cellular immunity. In summary, distinct components of immune system respond to gradually decreasing photoperiod differently in Siberian hamsters

    Targeting oncogenic miR-335 inhibits growth and invasion of malignant astrocytoma cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Astrocytomas are the most common and aggressive brain tumors characterized by their highly invasive growth. Gain of chromosome 7 with a hot spot at 7q32 appears to be the most prominent aberration in astrocytoma. Previously reports have shown that microRNA-335 (miR-335) resided on chromosome 7q32 is deregulated in many cancers; however, the biological function of miR-335 in astrocytoma has yet to be elucidated.</p> <p>Results</p> <p>We report that miR-335 acts as a tumor promoter in conferring tumorigenic features such as growth and invasion on malignant astrocytoma. The miR-335 level is highly elevated in C6 astrocytoma cells and human malignant astrocytomas. Ectopic expression of miR-335 in C6 cells dramatically enhances cell viability, colony-forming ability and invasiveness. Conversely, delivery of antagonist specific for miR-335 (antagomir-335) to C6 cells results in growth arrest, cell apoptosis, invasion repression and marked regression of astrocytoma xenografts. Further investigation reveals that miR-335 targets disheveled-associated activator of morphogenesis 1(Daam1) at posttranscriptional level. Moreover, silencing of endogenous Daam1 (siDaam1) could mimic the oncogenic effects of miR-335 and reverse the growth arrest, proapoptotic and invasion repression effects induced by antagomir-335. Notably, the oncogenic effects of miR-335 and siDAAM1 together with anti-tumor effects of antagomir-335 are also confirmed in human astrocytoma U87-MG cells.</p> <p>Conclusion</p> <p>These findings suggest an oncogenic role of miR-335 and shed new lights on the therapy of malignant astrocytomas by targeting miR-335.</p

    Identification of two novel and one rare mutation in DYRK1A and prenatal diagnoses in three Chinese families with intellectual Disability-7

    Get PDF
    Background and purpose: Intellectual disability-7 (MRD7) is a subtype disorder of intellectual disability (MRD) involving feeding difficulties, hypoactivity, and febrile seizures at an age of early onset, then progressive intellectual and physical development deterioration. We purposed to identify the underlying causative genetic factors of three individuals in each Chinese family who presented with symptoms of intellectual disability and facial dysmorphic features. We provided prenatal diagnosis for the three families and genetic counseling for the prevention of this disease.Methods: We collected retrospective clinical diagnostic evidence for the three probands in our study, which included magnetic resonance imaging (MRI), computerized tomography (CT), electroencephalogram (EEG), and intelligence tests for the three probands in our study. Genetic investigation of the probands and their next of kin was performed by Trio-whole exome sequencing (WES). Sanger sequencing or quantitative PCR technologies were then used as the next step to verify the variants confirmed with Trio-WES for the three families. Moreover, we performed amniocentesis to explore the state of the three pathogenic variants in the fetuses by prenatal molecular genetic diagnosis at an appropriate gestational period for the three families.Results: The three probands and one fetus were clinically diagnosed with microcephaly and exhibited intellectual developmental disability, postnatal feeding difficulties, and facial dysmorphic features. Combining probands’ clinical manifestations, Trio-WES uncovered the three heterozygous variants in DYRK1A: a novel variant exon3_exon4del p.(Gly4_Asn109del), a novel variant c.1159C&gt;T p.(Gln387*), and a previously presented but rare pathogenic variant c.1309C&gt;T p.(Arg437*) (NM_001396.5) in three families, respectively. In light of the updated American College of Medical Genetic and Genomics (ACMG) criterion, the variant of exon3_exon4del and c.1159C&gt;T were both classified as likely pathogenic (PSV1+PM6), while c1309C&gt;T was identified as pathogenic (PVS1+PS2_Moderate+PM2). Considering clinical features and molecular testimony, the three probands were confirmed diagnosed with MRD7. These three discovered variants were considered as the three causal mutations for MRD7. Prenatal diagnosis detected the heterozygous dominant variant of c.1159C&gt;T p.(Gln387*) in one of the fetuses, indicating a significant probability of MRD7, subsequently the gestation was intervened by the parents’ determination and professional obstetrical operation. On the other side, prenatal molecular genetic testing revealed wild-type alleles in the other two fetuses, and their parents both decided to sustain the gestation.Conclusion: We identified two novel and one rare mutation in DYRK1A which has broadened the spectrum of DYRK1A and provided evidence for the diagnosis of MRD7 at the molecular level. Besides, this study has supported the three families with MRD7 to determine the causative genetic factors efficiently and provide concise genetic counseling for the three families by using Trio-WES technology

    Analysis of chromosomal structural variations in patients with recurrent spontaneous abortion using optical genome mapping

    Get PDF
    Background and aims: Certain chromosomal structural variations (SVs) in biological parents can lead to recurrent spontaneous abortions (RSAs). Unequal crossing over during meiosis can result in the unbalanced rearrangement of gamete chromosomes such as duplication or deletion. Unfortunately, routine techniques such as karyotyping, fluorescence in situ hybridization (FISH), chromosomal microarray analysis (CMA), and copy number variation sequencing (CNV-seq) cannot detect all types of SVs. In this study, we show that optical genome mapping (OGM) quickly and accurately detects SVs for RSA patients with a high resolution and provides more information about the breakpoint regions at gene level.Methods: Seven couples who had suffered RSA with unbalanced chromosomal rearrangements of aborted embryos were recruited, and ultra-high molecular weight (UHMW) DNA was isolated from their peripheral blood. The consensus genome map was created by de novo assembly on the Bionano Solve data analysis software. SVs and breakpoints were identified via alignments of the reference genome GRCh38/hg38. The exact breakpoint sequences were verified using either Oxford Nanopore sequencing or Sanger sequencing.Results: Various SVs in the recruited couples were successfully detected by OGM. Also, additional complex chromosomal rearrangement (CCRs) and four cryptic balanced reciprocal translocations (BRTs) were revealed, further refining the underlying genetic causes of RSA. Two of the disrupted genes identified in this study, FOXK2 [46,XY,t(7; 17)(q31.3; q25)] and PLXDC2 [46,XX,t(10; 16)(p12.31; q23.1)], had been previously shown to be associated with male fertility and embryo transit.Conclusion: OGM accurately detects chromosomal SVs, especially cryptic BRTs and CCRs. It is a useful complement to routine human genetic diagnostics, such as karyotyping, and detects cryptic BRTs and CCRs more accurately than routine genetic diagnostics
    • …
    corecore