468 research outputs found

    Three-dimensional carbon foam nanocomposites for thermal energy storage

    Get PDF
    Nanocomposites consisting of paraffin/graphene nanoplatelets mix embedded in carbon foams via vacuum infiltration were fabricated with the aim of developing new phase change material (PCM) formulation with excellent shape stabilization, improved thermal conductivity and outstanding thermal reliability and structural stability. Physicochemical and thermal properties of the nanocomposites were evaluated using a suite of techniques such as scanning and transmission electron microscopy, X-ray diffraction, attenuated total reflection - Fourier transform infrared spectroscopy, nitrogen adsorption analyzer, differential scanning calorimetry, mechanical tester, Raman spectroscopy, thermal conductivity analyzer and thermogravimetric analyzer. The carbon foams exhibited good cyclic compressive behavior at a strain of up to 95% and kept part of their elastic properties after cyclic testing. Due to the robust mechanical integrity and layered meso-/macroporous morphology of these carbon foams, the nanocomposites are well equipped to cope with volume changes without leaking during thermal cycling. A 141% thermal conductivity enhancement observed for the carbon foam nanocomposite demonstrates the contributing role of the carbon foam in creating effective heat transfer through its conductive 3D network. The results have shown that proper chemical modification and subsequent carbonization of the low cost porous foams can lead to ultralight multifunctional materials with high mechanical and physical properties suitable for thermal energy storage applications

    A Weak Galerkin Mixed Finite Element Method for second order elliptic equations on 2D Curved Domains

    Full text link
    This article concerns the weak Galerkin mixed finite element method (WG-MFEM) for second order elliptic equations on 2D domains with curved boundary. The Neumann boundary condition is considered since it becomes the essential boundary condition in this case. It is well-known that the discrepancy between the curved physical domain and the polygonal approximation domain leads to a loss of accuracy for discretization with polynomial order α>1\alpha>1. The purpose of this paper is two-fold. First, we present a detailed error analysis of the original WG-MFEM for solving problems on curved domains, which exhibits an O(h1/2)O(h^{1/2}) convergence for all α≥1\alpha\ge 1. It is a little surprising to see that even the lowest-order WG-MFEM (α=1\alpha=1) experiences a loss of accuracy. This is different from known results for the finite element method (FEM) or the mixed FEM, and appears to be a combined effect of the WG-MFEM design and the fact that the outward normal vector on the polygonal approximation domain is different from the one on the curved domain. Second, we propose a remedy to bring the approximation rate back to optimal by employing two techniques. One is a specially designed boundary correction technique. The other is to take full advantage of the nice feature that weak Galerkin discretization can be defined on polygonal meshes, which allows the curved boundary to be better approximated by multiple short edges without increasing the total number of mesh elements. Rigorous analysis shows that a combination of the above two techniques renders optimal convergence for all α\alpha. Numerical results further confirm this conclusion

    Incremental Particle Swarm Optimization

    Get PDF
    AbstractBy simulating the population size of the human evolution, a PSO algorithm with increment of particle size (IPPSO) was proposed. Without changing the PSO operations, IPPSO can obtain better solutions with less time cost by modifying the structure of traditional PSO. Experimental results show that IPPSO using logistic model is more efficient and requires less computation time than using linear function in solving more complex program problems

    The Chart Excites Me! Exploring How Data Visualization Design Influences Affective Arousal

    Full text link
    As data visualizations have been increasingly applied in mass communication, designers often seek to grasp viewers immediately and motivate them to read more. Such goals, as suggested by previous research, are closely associated with the activation of emotion, namely affective arousal. Given this motivation, this work takes initial steps toward understanding the arousal-related factors in data visualization design. We collected a corpus of 265 data visualizations and conducted a crowdsourcing study with 184 participants during which the participants were asked to rate the affective arousal elicited by data visualization design (all texts were blurred to exclude the influence of semantics) and provide their reasons. Based on the collected data, first, we identified a set of arousal-related design features by analyzing user comments qualitatively. Then, we mapped these features to computable variables and constructed regression models to infer which features are significant contributors to affective arousal quantitatively. Through this exploratory study, we finally identified four design features (e.g., colorfulness, the number of different visual channels) cross-validated as important features correlated with affective arousal

    Effect of a combination of donepezil tablets and butylphthalide soft capsules on neurological function in dementia patients, and its effect on serum inflammatory factors

    Get PDF
    Purpose: To determine the effect of combined use of donepezil tablets and butylphthalide soft capsules in the treatment of patients with vascular dementia, and its effect on serum inflammatory factor levels and neurological functional recovery of patients.Methods: 120 patients with vascular dementia were selected and assigned to group A (n = 60) and group B (n = 60). All patients were treated with donepezil tablets, while patients in group A were, in addition, treated with butylphthalide soft capsules. Mini mental state examination (MMSE) scores, clinical dementia rating scale (CDRS) scores, activities of daily living (ADL) scores, incidence of adverse reactions, serum inflammatory factor levels and neurological functional recovery were determined.Results: There was significantly higher MMSE score in group A than in B, while CDRS score was lower in group A. The ADL scores and inflammatory factor levels were lower in group A than in B (p < 0.001), while neurological functional recovery was markedly better in A (p < 0.001). Incidents of unwanted events were comparable in groups A and B, and there were no serious complications in the patients.Conclusion: The combination therapy of donepezil tablets and butylphthalide soft capsules reduces inflammatory factor levels and improved cognitive level and quality of life of patients with vascular dementia. It also produces good neurological functional recovery and low incidence of adverse reactions. Therefore, this treatment strategy has potentials for the management of vascular dementia
    • …
    corecore