29 research outputs found

    Effect of external beam radiation therapy versus transcatheter arterial chemoembolization for non-diffuse hepatocellular carcinoma (≥ 5 cm): a multicenter experience over a ten-year period

    Get PDF
    BackgroundThe optimal local treatment for HCC with tumor diameter ≥ 5 cm is not well established. This research evaluated the effectiveness of external beam radiation therapy (EBRT) versus transcatheter arterial chemoembolization (TACE) for HCC with tumor diameter ≥ 5 cm.MethodsA total of 1210 HCC patients were enrolled in this study, including 302 and 908 patients that received EBRT and TACE, respectively. Propensity score matching (PSM) was used to identify patient pairs with similar baseline characteristics. Overall survival (OS) was the primary study endpoint.ResultsWe identified 428 patients using 1:1 PSM for survival comparison. Compared with the TACE group, the EBRT group had a significantly longer median OS (mOS) before (14.9 vs. 12.3 months, p = 0.0085) and after (16.8 vs. 11.4 months, p = 0.0026) matching. In the subgroup analysis, compared with the TACE group, the EBRT group had a significantly longer mOS for HCC with tumor diameters of 5-7 cm (34.1 vs. 14.3 months, p = 0.04) and 7-10 cm (34.4 vs. 10 months, p = 0.00065), whereas for HCC with tumor diameters ≥ 10 cm, no significant difference in mOS was observed (11.2 vs. 11.2 months, p = 0.83). In addition, the multivariable Cox analysis showed that Child-A, alkaline phosphatase < 125 U/L, and EBRT were independent prognostic indicators for longer survival.ConclusionEBRT is more effective than TACE as the primary local treatment for HCC with tumor diameter ≥ 5 cm, especially for HCC with tumor diameter of 5-10 cm

    Application of Metal-Organic Framework-Based Composites for Gas Sensing and Effects of Synthesis Strategies on Gas-Sensitive Performance

    No full text
    Gas sensing materials, such as semiconducting metal oxides (SMOx), carbon-based materials, and polymers have been studied in recent years. Among of them, SMOx-based gas sensors have higher operating temperatures; sensors crafted from carbon-based materials have poor selectivity for gases and longer response times; and polymer gas sensors have poor stability and selectivity, so it is necessary to develop high-performance gas sensors. As a porous material constructed from inorganic nodes and multidentate organic bridging linkers, the metal-organic framework (MOF) shows viable applications in gas sensors due to its inherent large specific surface area and high porosity. Thus, compounding sensor materials with MOFs can create a synergistic effect. Many studies have been conducted on composite MOFs with three materials to control the synergistic effects to improve gas sensing performance. Therefore, this review summarizes the application of MOFs in sensor materials and emphasizes the synthesis progress of MOF composites. The challenges and development prospects of MOF-based composites are also discussed

    Preparation and Application of 2D MXene-Based Gas Sensors: A Review

    No full text
    Since MXene (a two-dimensional material) was discovered in 2011, it has been favored in all aspects due to its rich surface functional groups, large specific surface area, high conductivity, large porosity, rich organic bonds, and high hydrophilicity. In this paper, the preparation of MXene is introduced first. HF etching was the first etching method for MXene; however, HF is corrosive, resulting in the development of the in situ HF method (fluoride + HCl). Due to the harmful effects of fluorine terminal on the performance of MXene, a fluorine-free preparation method was developed. The increase in interlayer spacing brought about by adding an intercalator can affect MXene’s performance. The usual preparation methods render MXene inevitably agglomerate and the resulting yields are insufficient. Many new preparation methods were researched in order to solve the problems of agglomeration and yield. Secondly, the application of MXene-based materials in gas sensors was discussed. MXene is often regarded as a flexible gas sensor, and the detection of ppb-level acetone at room temperature was observed for the first time. After the formation of composite materials, the increasing interlayer spacing and the specific surface area increased the number of active sites of gas adsorption and the gas sensitivity performance improved. Moreover, this paper discusses the gas-sensing mechanism of MXene. The gas-sensing mechanism of metallic MXene is affected by the expansion of the lamellae and will be doped with H2O and oxygen during the etching process in order to become a p-type semiconductor. A p-n heterojunction and a Schottky barrier forms due to combinations with other semiconductors; thus, the gas sensitivities of composite materials are regulated and controlled by them. Although there are only several reports on the application of MXene materials to gas sensors, MXene and its composite materials are expected to become materials that can effectively detect gases at room temperature, especially for the detection of NH3 and VOC gas. Finally, the challenges and opportunities of MXene as a gas sensor are discussed

    Synthesis of ZIF-8 Coating on ZnO Nanorods for Enhanced Gas-Sensing Performance

    No full text
    Firstly, ZnO nanorods were prepared by a relatively simple method, and then self-sacrificed by a water bath heating method to generate a commonly used porous ZIF-8 and firmly attached to the ZnO surface. The successful synthesis of synthetic composites was demonstrated with various detection methods. The gas-sensing results show that the ZIF-8-coated ZnO with a core-shell structure exhibits better response than the raw ZnO because of the increased specific surface area and active sites

    A Review of Electrode for Rechargeable Magnesium Ion Batteries

    No full text

    Synthesis and characterization of nanostructured Ag on porous titania

    No full text
    In this work, porous titania was prepared on bulk Ti by chemical oxidation, and then nanostructured silver (Ag) was deposited on titania surface by ion beam sputtering. After annealing treatment, Ag/TiO2 composites were characterized using X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Results indicated that a nano-porous titania layer with mean pore size of 150 nm and thickness of 1 m was formed by chemical oxidation at 80 ◦ C for 45 min. There were three Ag species (Ag (0), Ag (1+), and Ag (2+)) on composites surface after annealing treatment, and metallic Ag content achieved maximum value with annealing temperature of 500 ◦ C in air. Ag showed high thermal stability being partly attributed to the inhibiting the diffusion of Ag by the underlying porous titania

    Using Field Spectroradiometer to Estimate the Leaf N/P Ratio of Mixed Forest in a Karst Area of Southern China: A Combined Model to Overcome Overfitting

    No full text
    The ratio between nitrogen and phosphorus (N/P) in plant leaves has been widely used to assess the availability of nutrients. However, it is challenging to rapidly and accurately estimate the leaf N/P ratio, especially for mixed forest. In this study, we collected 301 samples from nine typical karst areas in Guangxi Province during the growing season of 2018 to 2020. We then utilized five models (partial least squares regression (PLSR), backpropagation neural network (BPNN), general regression neural network (GRNN), PLSR+BPNN, and PLSR+GRNN) to estimate the leaf N/P ratio of plants based on these samples. We also applied the fractional differentiation to extract additional information from the original spectra of each sample. The results showed that the average leaf N/P ratio of plants was 17.97. Plant growth was primarily limited by phosphorus in these karst areas. The sensitive spectra to estimate leaf N/P ratio had wavelengths ranging from 400–730 nm. The prediction capabilities of these five models can be ranked in descending order as PLSR+GRNN, PLSR+BPNN, PLSR, GRNN, and BPNN when considering both accuracy and robustness. The PLSR+GRNN model yielded high R2 and performance to deviation (RPD), and low root mean squared error (RMSE) with values of 0.91, 3.15, and 1.98, respectively, for the training test and 0.81, 2.25, and 2.46, respectively, for validation test. Compared with the PLSR model, both PLSR+BPNN and PLSR+GRNN models had higher accuracy and were more stable. Moreover, both PLSR+BPNN and PLSR+GRNN models overcame the issue of overfitting, which occurs when a single model is used to predict leaf N/P ratio. Therefore, both PLSR+BPNN and PLSR+GRNN models can be used to predict the leaf N/P ratio of plants in karst areas. Fractional differentiation is a promising spectral preprocessing technique that can improve the accuracy of models. We conclude that the leaf N/P ratio of mixed forest can be effectively estimated using combined models based on field spectroradiometer data in karst areas

    Genome-Wide Identification and Expression Analysis of WRKY Gene Family in <i>Neolamarckia cadamba</i>

    No full text
    The WRKY transcription factor family plays important regulatory roles in multiple biological processes in higher plants. They have been identified and functionally characterized in a number of plant species, but very little is known in Neolamarckia cadamba, a ‘miracle tree’ for its fast growth and potential medicinal resource in Southeast Asia. In this study, a total of 85 WRKY genes were identified in the genome of N. cadamba. They were divided into three groups according to their phylogenetic features, with the support of the characteristics of gene structures and conserved motifs of protein. The NcWRKY genes were unevenly distributed on 22 chromosomes, and there were two pairs of segmentally duplicated events. In addition, a number of putative cis-elements were identified in the promoter regions, of which hormone- and stress-related elements were shared in many NcWRKYs. The transcript levels of NcWRKY were analyzed using the RNA-seq data, revealing distinct expression patterns in various tissues and at different stages of vascular development. Furthermore, 16 and 12 NcWRKY genes were confirmed to respond to various hormone treatments and two different abiotic stress treatments, respectively. Moreover, the content of cadambine, the active metabolite used for the various pharmacological activities found in N. cadamba, significantly increased after Methyl jasmonate treatment. In addition, expression of NcWRKY64/74 was obviously upregulated, suggesting that they may have a potential function of regulating the biosynthesis of cadambine in response to MeJA. Taken together, this study provides clues into the regulatory roles of the WRKY gene family in N. cadamba

    The novel long non-coding RNA CRG regulates Drosophila locomotor behavior

    Get PDF
    Long non-coding RNAs (lncRNAs) that have no protein-coding capacity make up a large proportion of the transcriptome of various species. Many lncRNAs are expressed within the animal central nervous system in spatial- and temporal-specific patterns, indicating that lncRNAs play important roles in cellular processes, neural development, and even in cognitive and behavioral processes. However, relatively little is known about their in vivo functions and underlying molecular mechanisms in the nervous system. Here, we report a neural-specific Drosophila lncRNA, CASK regulatory gene (CRG), which participates in locomotor activity and climbing ability by positively regulating its neighboring gene CASK (Ca2+/calmodulin-dependent protein kinase). CRG deficiency led to reduced locomotor activity and a defective climbing ability-phenotypes that are often seen in CASK mutant. CRG mutant also showed reduced CASK expression level while CASK over-expression could rescue the CRG mutant phenotypes in reciprocal. At the molecular level, CRG was required for the recruitment of RNA polymerase II to the CASK promoter regions, which in turn enhanced CASK expression. Our work has revealed new functional roles of lncRNAs and has provided insights to explore the pathogenesis of neurological diseases associated with movement disorders
    corecore