42 research outputs found

    VIRULENCE GENOTYPE AND PHYLOGENETIC GROUPS IN RELATION TO CHINESE HERB RESISTANCE AMONG ESCHERICHIA COLI FROM PATIENTS WITH ACUTE PYELONEPHRITIS

    Get PDF
    Background: Clinical isolates of herb-resistant uropathogenic E. coli were isolated. It was possible that the virulence genotypes and phylogenetic background of E. coli differed between Chinese herb-resistant E. coli and -susceptible isolates. For this purpose, the prevalence of virulence factors (VFs) and phylogenetic background, with regard to Chinese herb resistance, among E. coli strains causing acute pyelonephritis from China were investigated. Materials and Methods: E. coli isolates from patients with acute pyelonephritis were used in this study. Standard disc diffusion methodology was used to test the susceptibility of Chinese herbal concoction against E. coli strains. Multiplex PCR amplifications employed three markers (chuA, yjaA, and TSPE4.C2) to classify E. coli isolates into one of four phylogenetic groups (group A, B1, B2, or D). The isolates were also tested for 14 virulence-associated traits (VFs) of uropathogenic E. coli. Results: A total of 115 E. coli strains were isolated. 79 (68.7%) were susceptible and 36 (31.3%) were resistant to the herbal concoction. 20.9% of the isolates encoded three or more of VFs for which they were screened, with 13.9% in susceptible isolates and 36.1% in resistant isolates. The key VFs (fyuA and/or iutA siderophores) present in >80% of isolates. The papA and papC adhesins were detected in the majority of resistant isolates (72.2% and 63.9% respectively). 78.5% of susceptible isolates belong to phylogenetic groups A, while 83.3% of resistant isolates belong to group B2. Conclusion: PapA and papC are significant VFs with an essential role in contributing to Chinese herb-resistance. Chinese herb-resistance is associated with a shift towards more virulent strains and B2 phylogenetic group

    Polarization-entangled quantum frequency comb

    Full text link
    Integrated micro-resonator facilitates the realization of quantum frequency comb (QFC), which provides a large number of discrete frequency modes with broadband spectral range and narrow linewidth. However, all previous demonstrations have focused on the generation of energy-time or time-bin entangled photons from QFC. Realizing polarization-entangled quantum frequency comb, which is the important resource for fundamental study of quantum mechanics and quantum information applications, remains challenging. Here, we demonstrate, for the first time, a broadband polarization-entangled quantum frequency comb by combining an integrated silicon nitride micro-resonator with a Sagnac interferometer. With a free spectral range of about 99 GHz and a narrow linewidth of about 190 MHz, our source provides 22 polarization entangled photons pairs with frequency covering the whole telecom C-band. The entanglement fidelities for all 22 pairs are above 81%, including 17 pairs with fidelities higher than 90%. Our demonstration paves the way for employing the polarization-entangled quantum frequency comb in quantum network using CMOS technology as well as standard dense wavelength division multiplexing technology.Comment: 11 pages, 9 figure

    Ethyl lauroyl arginate: An update on the antimicrobial potential and application in the food systems: a review

    Get PDF
    Ethyl lauroyl arginate (ELA), a cationic surfactant with low toxicity, displays excellent antimicrobial activity against a broad range of microorganisms. ELA has been approved as generally recognized as safe (GRAS) for widespread application in certain foods at a maximum concentration of 200 ppm. In this context, extensive research has been carried out on the application of ELA in food preservation for improving the microbiological safety and quality characteristics of various food products. This study aims to present a general review of recent research progress on the antimicrobial efficacy of ELA and its application in the food industry. It covers the physicochemical properties, antimicrobial efficacy of ELA, and the underlying mechanism of its action. This review also summarizes the application of ELA in various foods products as well as its influence on the nutritional and sensory properties of such foods. Additionally, the main factors influencing the antimicrobial efficacy of ELA are reviewed in this work, and combination strategies are provided to enhance the antimicrobial potency of ELA. Finally, the concluding remarks and possible recommendations for the future research are also presented in this review. In summary, ELA has the great potential application in the food industry. Overall, the present review intends to improve the application of ELA in food preservation
    corecore