7 research outputs found

    Acetylation Targets the M2 Isoform of Pyruvate Kinase for Degradation through Chaperone-Mediated Autophagy and Promotes Tumor Growth

    Get PDF
    Most tumor cells take up more glucose than normal cells but metabolize glucose via glycolysis even in the presence of normal levels of oxygen, a phenomenon known as the Warburg effect. Tumor cells commonly express the embryonic M2 isoform of pyruvate kinase (PKM2) that may contribute to the metabolism shift from oxidative phosphorylation to aerobic glycolysis and tumorigenesis. Here we show that PKM2 is acetylated on lysine 305 and that this acetylation is stimulated by high glucose concentration. PKM2 K305 acetylation decreases PKM2 enzyme activity and promotes its lysosomal-dependent degradation via chaperone-mediated autophagy (CMA). Acetylation increases PKM2 interaction with HSC70, a chaperone for CMA, and association with lysosomes. Ectopic expression of an acetylation mimetic K305Q mutant accumulates glycolytic intermediates and promotes cell proliferation and tumor growth. These results reveal an acetylation regulation of pyruvate kinase and the link between lysine acetylation and CMA

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two

    Get PDF
    Background The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd. Methods We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background. Results First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001). Conclusions In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival

    Recovery Dynamics of Intestinal Bacterial Communities of CCl4-Treated Mice with or without Mesenchymal Stem Cell Transplantation over Different Time Points

    No full text
    Liver injury has caused significant illness in humans worldwide. The dynamics of intestinal bacterial communities associated with natural recovery and therapy for CCl4-treated liver injury remain poorly understood. This study was designed to determine the recovery dynamics of intestinal bacterial communities in CCl4-treated mice with or without mesenchymal stem cell transplantation (i.e., MSC and CCl4 groups) at 48 h, 1 week (w), and 2 w. MSCs significantly improved the histopathology, survival rate, and intestinal structural integrity in the treated mice. The gut bacterial communities were determined with significant changes in both the MSC and CCl4 groups over time, with the greatest difference between the MSC and CCl4 groups at 48 h. The liver injury dysbiosis ratio experienced a decrease in the MSC groups and a rise in the CCl4 groups over time, suggesting the mice in the MSC group at 48 h and the CCl4 group at two weeks were at the least gut microbial dysbiosis status among the corresponding cohorts. Multiple OTUs and functional categories were associated with each of the bacterial communities in the MSC and CCl4 groups over time. Among these gut phylotypes, OTU1352_S24-7 was determined as the vital member in MSC-treated mice at 48 h, while OTU453_S24-7, OTU1213_Ruminococcaceae, and OTU841_Ruminococcus were determined as the vital phylotypes in CCl4-treated mice at two weeks. The relevant findings could assist the diagnosis of the microbial dysbiosis status of intestinal bacterial communities in the CCl4-treated cohorts with or without MSC transplantation

    Rasch Analysis of the Dermatology Life Quality Index Reveals Limited Application to Chinese Patients with Skin Disease

    No full text
    The objective of this study was to examine the psychometric properties of the Chinese version of the Dermatology Life Quality Index (DLQI) and to assess the invariance of its items with respect to several patient parameters via Rasch analysis. Data were aggregated from 9,845 patients with various skin diseases across 9 hospitals in different regions of China. The response structure, local independence, and reliability of the DLQI scale were analysed in a partial credit model, and differential item functioning (DIF) across region, disease, sex, and age were assessed with a Mantel-Haenszel procedure. Although acceptable scale reliability (Person Separation Index=2.3) was obtained, several problems were revealed, including disordered response thresholds, misfitting items, DIF by geogra­phical region and disease, and mis-targeting patients with mild impairment regarding health-related quality of life (HRQL). In conclusion, the DLQI provides inadequate information on patients’ impairments in HRQL, and the application of the DLQI in Chinese patients with skin disease is limited
    corecore