1,164 research outputs found
Effects of probiotic Bacillus as a substitute for antibiotics on antioxidant capacity and intestinal autophagy of piglets
The objective of this study was to evaluate effects of probiotic Bacillus amyloliquefaciens (Ba) as a substitute for antibiotics on growth performance, antioxidant ability and intestinal autophagy of piglets. Ninety piglets were divided into three groups: G1 (containing 150 mg/Kg aureomycin in the diet); G2 (containing 75 mg/Kg aureomycin and 1 × 10(8) cfu/Kg Ba in the diet); G3 (containing 2 × 10(8) cfu/Kg Ba in the diet without any antibiotics). Each treatment had three replications of ten pigs per pen. Results showed that Ba replacement significantly increased the daily weight gain of piglets. Moreover, improved antioxidant status in serum and jejunum was noted in Ba-fed groups as compared with aureomycin group. Increased gene expression of antioxidant enzymes and elevated nuclear factor erythroid 2 related factor 2 (Nrf2) in jejunum was also observed in Ba-fed groups. Besides, Ba replacement significantly decreased jejunal c-Jun N-terminal kinase (JNK) phosphorylation compared with antibiotic group. Western blotting results also revealed that replacing all antibiotics with Ba initiated autophagy in the jejunum as evidenced by increased microtubule-associated protein 1 light chain 3 II (LC3-II) abundance. Taken together, these results indicate that replacing aureomycin with Ba can improve growth performance and antioxidant status of piglets via increasing antioxidant capacity and intestinal autophagy, suggesting a good potential for Ba as an alternative to antibiotics in feed. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13568-017-0353-x) contains supplementary material, which is available to authorized users
Co-infection of a hypovirulent isolate of Sclerotinia sclerotiorum with a new botybirnavirus and a strain of a mitovirus
BACKGROUND: Sclerotinia sclerotiorum, a notorious plant fungal pathogen, causes yield loss of many crops and vegetables, and is a natural host of a diverse viruses with positive-sense RNA (+ssRNA), negative-sense RNA (−ssRNA), double-stranded RNA (dsRNA), or DNA genomes. Mixed-infection with multiple related or unrelated mycoviruses is a common phenomenon in S. sclerotiorum. However, a single strain co-infected with dsRNA and + ssRNA viruses has not been reported in S. sclerotiorum. RESULTS: We report two unrelated viruses, Sclerotinia sclerotiorum botybirnavirus 2 (SsBRV2) with a bipartite dsRNA genome and Sclerotinia sclerotiorum mitovirus 4 (SsMV4/AH16) with a + ssRNA genome, which were originally detected in a single hypovirulent strain AH16 of S. sclerotiorum. SsMV4/AH16 has a typical genome of mitovirus and is a strain of mitovirus SsMV4. The genome of SsBRV2 consists of two separated dsRNA segments. The large dsRNA segment is 6159 bp in length and only has a single open reading frame (ORF) encoding a putative 1868-aa polyprotein with a conserved RNA dependent RNA polymerase (RdRp) domain. The small dsRNA segment is 5872 bp in length and encodes a putative 1778-aa protein. Phylogenetic analysis using RdRp conserved domain sequences revealed that SsBRV2 is phylogenetically related to the previously reported three bipartite viruses SsBRV1, Botrytis porri RNA virus 1 (BpRV1), and soybean leaf-associated botybirnavirus 1 (SlaBRV1). Electron microscopy demonstrated that SsBRV2 forms rigid spherical virions with a diameter of approximately 40 nm in infected mycelia. The virion of SsBRV2 was successfully introduced into a virus-free strain, which provides conclusive evidence that SsBRV2 confers hypovirulence on phytopathogenic fungus S. sclerotiorum. CONCLUSIONS: A bisegmented dsRNA virus (SsBRV2/AH16) and a nonsegmented + ssRNA virus (SsMV4/AH16) were characterized in a hypovirulent strain AH16 of S. sclerotiorum. SsMV4/AH16 is a strain of a reported mitovirus, whereas SsBRV2 is a new botybirnavirus. SsBRV2 is the causal agent of hypovirulence on S. sclerotiorum. Our findings supplied a first evidence that a single S. sclerotiorum strain is co-infected by dsRNA and + ssRNA mycoviruses. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12985-016-0550-2) contains supplementary material, which is available to authorized users
Histone H3 Lysine 9 Methyltransferase DIM5 Is Required for the Development and Virulence of Botrytis cinerea
Histone methylation is widely present in animals, plants and fungi, and the methylation modification of histone H3 has important biological functions. Methylation of Lys9 of histone H3 (H3K9) has been proven to regulate chromatin structure, gene silencing, transcriptional activation, plant metabolism and other processes. In this work, we investigated the functions of a H3K9 methyltransferase gene BcDIM5 in Botrytis cinerea, which contains a PreSET domain, a SET domain and a PostSET domain. Characterization of BcDIM5 knockout transformants showed that the hyphal growth rate and production of conidiophores and sclerotia were significantly reduced, while complementary transformation of BcDIM5 could restore the phenotypes to the levels of wild type. Pathogenicity assays revealed that BcDIM5 was essential for full virulence of B. cinerea. BcDIM5 knockout transformants exhibited decreased virulence, down-regulated expression of some pathogenic genes and drastically decreased H3K9 trimethylation level. However, knockout transformants of other two genes heterochromatin protein 1 (HP1) BcHP1 and DNA methyltransferase (DIM2) BcDIM2 did not exhibit significant change in the growth phenotype and virulence compared with the wild type. Our results indicate that H3K9 methyltransferase BcDIM5 is required for H3K9 trimethylation to regulate the development and virulence of B. cinerea
1. スポロトリコーシス5例(第443回千葉医学会例会 第16回千葉皮膚科臨床談話会)
A potential stable stem-loop structure in the 5â-terminal sequence (left) and a triple stem-loop structure in 3â-terminal sequences (right) were predicted with a RNA structure software. (PDF 60 kb
E6 Protein Expressed by High-Risk HPV Activates Super-Enhancers of the EGFR and c-MET Oncogenes by Destabilizing the Histone
The high-risk (HR) human papillomaviruses (HPV) are causative agents of anogenital tract dysplasia and cancers and a fraction of head and neck cancers. The HR HPV E6 oncoprotein possesses canonical oncogenic functions, such as p53 degradation and telomerase activation. It is also capable of stimulating expression of several oncogenes, but the molecular mechanism underlying these events is poorly understood. Here, we provide evidence that HPV16 E6 physically interacts with histone H3K4 demethylase KDM5C, resulting in its degradation in an E3 ligase E6AP- and proteasome-dependent manner. Moreover, we found that HPV16-positive cancer cell lines exhibited lower KDM5C protein levels than HPV-negative cancer cell lines. Restoration of KDM5C significantly suppressed the tumorigenicity of CaSki cells, an HPV16-positive cervical cancer cell line. Whole genome ChIP-seq and RNA-seq results revealed that CaSki cells contained super-enhancers in the proto-oncogenes EGFR and c-MET. Ectopic KDM5C dampened these super-enhancers and reduced the expression of proto-oncogenes. This effect was likely mediated by modulating H3K4me3/H3K4me1 dynamics and decreasing bidirectional enhancer RNA transcription. Depletion of KDM5C or HPV16 E6 expression activated these two super-enhancers. These results illuminate a pivotal relationship between the oncogenic E6 proteins expressed by HR HPV isotypes and epigenetic activation of super-enhancers in the genome that drive expression of key oncogenes like EGFR and c-MET. Significance: This study suggests a novel explanation for why infections with certain HPV isotypes are associated with elevated cancer risk by identifying an epigenetic mechanism through which E6 proteins expressed by those isotypes can drive expression of key oncogenes.</p
A novel virus that infecting hypovirulent strain XG36-1 of plant fungal pathogen Sclerotinia sclerotiorum
Landscape of variable domain of heavy‐chain‐only antibody repertoire from alpaca
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/156425/2/imm13224_am.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/156425/1/imm13224.pd
- …
