739 research outputs found
Organizational factors and depression management in community-based primary care settings
Abstract Background Evidence-based quality improvement models for depression have not been fully implemented in routine primary care settings. To date, few studies have examined the organizational factors associated with depression management in real-world primary care practice. To successfully implement quality improvement models for depression, there must be a better understanding of the relevant organizational structure and processes of the primary care setting. The objective of this study is to describe these organizational features of routine primary care practice, and the organization of depression care, using survey questions derived from an evidence-based framework. Methods We used this framework to implement a survey of 27 practices comprised of 49 unique offices within a large primary care practice network in western Pennsylvania. Survey questions addressed practice structure (e.g., human resources, leadership, information technology (IT) infrastructure, and external incentives) and process features (e.g., staff performance, degree of integrated depression care, and IT performance). Results The results of our survey demonstrated substantial variation across the practice network of organizational factors pertinent to implementation of evidence-based depression management. Notably, quality improvement capability and IT infrastructure were widespread, but specific application to depression care differed between practices, as did coordination and communication tasks surrounding depression treatment. Conclusions The primary care practices in the network that we surveyed are at differing stages in their organization and implementation of evidence-based depression management. Practical surveys such as this may serve to better direct implementation of these quality improvement strategies for depression by improving understanding of the organizational barriers and facilitators that exist within both practices and practice networks. In addition, survey information can inform efforts of individual primary care practices in customizing intervention strategies to improve depression management.http://deepblue.lib.umich.edu/bitstream/2027.42/78269/1/1748-5908-4-84.xmlhttp://deepblue.lib.umich.edu/bitstream/2027.42/78269/2/1748-5908-4-84-S1.PDFhttp://deepblue.lib.umich.edu/bitstream/2027.42/78269/3/1748-5908-4-84.pdfPeer Reviewe
Effect of hot calendering on physical properties and water vapor transfer resistance of bacterial cellulose films
This work investigates the effect of hot calendering on bacterial cellulose (BC) films properties, aiming the achievement of good transparency and barrier property. A comparison was made using vegetal cellulose (VC) films on a similar basis weight of around 40 g.m-2. The optical-structural, mechanical and barrier property of BC films were studied and compared with those of highly beaten VC films. The Youngs moduli and tensile index of the BC films are much higher than those obtained for VC (14.5 16.2 GPa vs 10.8 8.7 GPa and 146.7 64.8 N.m.g-1 vs 82.8 40.5 N.m.g-1), respectively. Calendering increased significantly the transparency of BC films from 53.0 % to 73.0 %. The effect of BC ozonation was also studied. Oxidation with ozone somewhat enhanced the brightness and transparency of the BC films, but at the expenses of slightly lower mechanical properties. BC films exhibited a low water vapor transfer rate, when compared to VC films and this property decreased by around 70 % following calendering, for all films tested. These results show that calendering could be used as a process to obtain films suitable for food packaging applications, where transparency, good mechanical performance and barrier properties are important. The BC films obtained herein are valuable products that could be a good alternative to the highly used plastics in this industry.The authors thank FCT (Fundação para a Ciência e Tecnologia) and FEDER (Fundo Europeu de
Desenvolvimento Regional) for the financial support of the project FCT PTDC/AGR-FOR/3090/2012— FCOMP-01-0124-FEDER-027948 and the awarding of a research grant for Vera Costa
A classification of the torsion tensors on almost contact manifolds with B-metric
The space of the torsion (0,3)-tensors of the linear connections on almost
contact manifolds with B-metric is decomposed in 15 orthogonal and invariant
subspaces with respect to the action of the structure group. Three known
connections, preserving the structure, are characterized regarding this
classification.Comment: 17 pages, exposition clarified, references adde
Molecular Dynamics Analysis Reveals Structural Insights into Mechanism of Nicotine N-Demethylation Catalyzed by Tobacco Cytochrome P450 Mono-Oxygenase
CYP82E4, a cytochrome P450 monooxygenase, has nicotine N-demethylase (NND) activity, which mediates the bioconversion of nicotine into nornicotine in senescing tobacco leaves. Nornicotine is a precursor of the carcinogen, tobacco-specific nitrosamine. CYP82E3 is an ortholog of CYP82E4 with 95% sequence identity, but it lacks NND activity. A recent site-directed mutagenesis study revealed that a single amino acid substitution, i.e., cysteine to tryptophan at the 330 position in the middle of protein, restores the NND activity of CYP82E3 entirely. However, the same amino acid change caused the loss of the NND activity of CYP82E4. To determine the mechanism of the functional turnover of the two molecules, four 3D structures, i.e., the two molecules and their corresponding cys–trp mutants were modeled. The resulting structures exhibited that the mutation site is far from the active site, which suggests that no direct interaction occurs between the two sites. Simulation studies in different biological scenarios revealed that the mutation introduces a conformation drift with the largest change at the F-G loop. The dynamics trajectories analysis using principal component analysis and covariance analysis suggests that the single amino acid change causes the opening and closing of the transfer channels of the substrates, products, and water by altering the motion of the F-G and B-C loops. The motion of helix I is also correlated with the motion of both the F-G loop and the B-C loop and; the single amino acid mutation resulted in the curvature of helix I. These results suggest that the single amino acid mutation outside the active site region may have indirectly mediated the flexibility of the F-G and B-C loops through helix I, causing a functional turnover of the P450 monooxygenase
Identification of S100A8-correlated genes for prediction of disease progression in non-muscle invasive bladder cancer
<p>Abstract</p> <p>Background</p> <p><it>S100 calcium binding protein A8 </it>(<it>S100A8</it>) has been implicated as a prognostic indicator in several types of cancer. However, previous studies are limited in their ability to predict the clinical behavior of the cancer. Here, we sought to identify a molecular signature based on <it>S100A8 </it>expression and to assess its usefulness as a prognostic indicator of disease progression in non-muscle invasive bladder cancer (NMIBC).</p> <p>Methods</p> <p>We used 103 primary NMIBC specimens for microarray gene expression profiling. The median follow-up period for all patients was 57.6 months (range: 3.2 to 137.0 months). Various statistical methods, including the leave-one-out cross validation method, were applied to identify a gene expression signature able to predict the likelihood of progression. The prognostic value of the gene expression signature was validated in an independent cohort (n = 302).</p> <p>Results</p> <p>Kaplan-Meier estimates revealed significant differences in disease progression associated with the expression signature of <it>S100A8</it>-correlated genes (log-rank test, <it>P </it>< 0.001). Multivariate Cox regression analysis revealed that the expression signature of <it>S100A8</it>-correlated genes was a strong predictor of disease progression (hazard ratio = 15.225, 95% confidence interval = 1.746 to 133.52, <it>P </it>= 0.014). We validated our results in an independent cohort and confirmed that this signature produced consistent prediction patterns. Finally, gene network analyses of the signature revealed that <it>S100A8</it>, <it>IL1B</it>, and <it>S100A9 </it>could be important mediators of the progression of NMIBC.</p> <p>Conclusions</p> <p>The prognostic molecular signature defined by <it>S100A8</it>-correlated genes represents a promising diagnostic tool for the identification of NMIBC patients that have a high risk of progression to muscle invasive bladder cancer.</p
A microcosting study of microsurgery, LINAC radiosurgery, and gamma knife radiosurgery in meningioma patients
The aim of the present study is to determine and compare initial treatment costs of microsurgery, linear accelerator (LINAC) radiosurgery, and gamma knife radiosurgery in meningioma patients. Additionally, the follow-up costs in the first year after initial treatment were assessed. Cost analyses were performed at two neurosurgical departments in The Netherlands from the healthcare providers’ perspective. A total of 59 patients were included, of whom 18 underwent microsurgery, 15 underwent LINAC radiosurgery, and 26 underwent gamma knife radiosurgery. A standardized microcosting methodology was employed to ensure that the identified cost differences would reflect only actual cost differences. Initial treatment costs, using equipment costs per fraction, were €12,288 for microsurgery, €1,547 for LINAC radiosurgery, and €2,412 for gamma knife radiosurgery. Higher initial treatment costs for microsurgery were predominantly due to inpatient stay (€5,321) and indirect costs (€4,350). LINAC and gamma knife radiosurgery were equally expensive when equipment was valued per treatment (€2,198 and €2,412, respectively). Follow-up costs were slightly, but not significantly, higher for microsurgery compared with LINAC and gamma knife radiosurgery. Even though initial treatment costs were over five times higher for microsurgery compared with both radiosurgical treatments, our study gives indications that the relative cost difference may decrease when follow-up costs occurring during the first year after initial treatment are incorporated. This reinforces the need to consider follow-up costs after initial treatment when examining the relative costs of alternative treatments
Heat shock protein-90-alpha, a prolactin-STAT5 target gene identified in breast cancer cells, is involved in apoptosis regulation
Introduction The prolactin-Janus-kinase-2-signal transducer and activator of transcription-5 (JAK2-STAT5) pathway is essential for the development and functional differentiation of the mammary gland. The pathway also has important roles in mammary tumourigenesis. Prolactin regulated target genes are not yet well defined in tumour cells, and we undertook, to the best of our knowledge, the first large genetic screen of breast cancer cells treated with or without exogenous prolactin. We hypothesise that the identification of these genes should yield insights into the mechanisms by which prolactin participates in cancer formation or progression, and possibly how it regulates normal mammary gland development. Methods We used subtractive hybridisation to identify a number of prolactin-regulated genes in the human mammary carcinoma cell line SKBR3. Northern blotting analysis and luciferase assays identified the gene encoding heat shock protein 90-alpha (HSP90A) as a prolactin-JAK2-STAT5 target gene, whose function was characterised using apoptosis assays. Results We identified a number of new prolactin-regulated genes in breast cancer cells. Focusing on HSP90A, we determined that prolactin increased HSP90A mRNA in cancerous human breast SKBR3 cells and that STAT5B preferentially activated the HSP90A promoter in reporter gene assays. Both prolactin and its downstream protein effector, HSP90α, promote survival, as shown by apoptosis assays and by the addition of the HSP90 inhibitor, 17-allylamino-17-demethoxygeldanamycin (17-AAG), in both untransformed HC11 mammary epithelial cells and SKBR3 breast cancer cells. The constitutive expression of HSP90A, however, sensitised differentiated HC11 cells to starvation-induced wild-type p53-independent apoptosis. Interestingly, in SKBR3 breast cancer cells, HSP90α promoted survival in the presence of serum but appeared to have little effect during starvation. Conclusions In addition to identifying new prolactin-regulated genes in breast cancer cells, we found that prolactin-JAK2-STAT5 induces expression of the HSP90A gene, which encodes the master chaperone of cancer. This identifies one mechanism by which prolactin contributes to breast cancer. Increased expression of HSP90A in breast cancer is correlated with increased cell survival and poor prognosis and HSP90α inhibitors are being tested in clinical trials as a breast cancer treatment. Our results also indicate that HSP90α promotes survival depending on the cellular conditions and state of cellular transformation
Regulation of DNA Repair Mechanism in Human Glioma Xenograft Cells both In Vitro and In Vivo in Nude Mice
Glioblastoma Multiforme (GBM) is the most lethal form of brain tumor. Efficient DNA repair and anti-apoptotic mechanisms are making glioma treatment difficult. Proteases such as MMP9, cathepsin B and urokinase plasminogen activator receptor (uPAR) are over expressed in gliomas and contribute to enhanced cancer cell proliferation. Non-homologous end joining (NHEJ) repair mechanism plays a major role in double strand break (DSB) repair in mammalian cells.Here we show that silencing MMP9 in combination with uPAR/cathepsin B effects NHEJ repair machinery. Expression of DNA PKcs and Ku70/80 at both mRNA and protein levels in MMP9-uPAR (pMU) and MMP9-cathepsin B (pMC) shRNA-treated glioma xenograft cells were reduced. FACS analysis showed an increase in apoptotic peak and proliferation assays revealed a significant reduction in the cell population in pMU- and pMC-treated cells compared to untreated cells. We hypothesized that reduced NHEJ repair led to DSBs accumulation in pMU- and pMC-treated cells, thereby initiating cell death. This hypothesis was confirmed by reduced Ku70/Ku80 protein binding to DSB, increased comet tail length and elevated γH2AX expression in treated cells compared to control. Immunoprecipitation analysis showed that EGFR-mediated lowered DNA PK activity in treated cells compared to controls. Treatment with pMU and pMC shRNA reduced the expression of DNA PKcs and ATM, and elevated γH2AX levels in xenograft implanted nude mice. Glioma cells exposed to hypoxia and irradiation showed DSB accumulation and apoptosis after pMU and pMC treatments compared to respective controls.Our results suggest that pMU and pMC shRNA reduce glioma proliferation by DSB accumulation and increase apoptosis under normoxia, hypoxia and in combination with irradiation. Considering the radio- and chemo-resistant cancers favored by hypoxia, our study provides important therapeutic potential of MMP9, uPAR and cathepsin B shRNA in the treatment of glioma from clinical stand point
Childhood meat eating and inflammatory markers: The Guangzhou Biobank Cohort Study
<p>Abstract</p> <p>Background</p> <p>We hypothesized that socio-economic development could, via nutritionally driven levels of pubertal sex-steroids, promote a pro-inflammatory state among men but not women in developing countries. We tested this hypothesis, using recalled childhood meat eating as a proxy for childhood nutrition, in southern China.</p> <p>Methods</p> <p>We used multivariable linear regression in the Guangzhou Biobank Cohort Study phase 3 (2006-8) to examine the adjusted associations of recalled childhood meat eating, <1/week (n = 5,023), about once per week (n = 3,592) and almost daily (n = 1,252), with white blood cell count and its differentials among older (≥50 years) men (n = 2,498) and women (n = 7,369).</p> <p>Results</p> <p>Adjusted for age, childhood socio-economic position, education and smoking, childhood meat eating had sex-specific associations with white blood cell count and lymphocyte count, but not granulocyte count. Men with childhood meat eating almost daily compared to <1/week had higher white blood cell count (0.33 10<sup>9</sup>/L, 95% confidence interval (CI) 0.10 to 0.56) and higher lymphocyte count (0.16 10<sup>9</sup>/L, 95% CI 0.07 to 0.25). Adjustment for obesity slightly attenuated these associations.</p> <p>Conclusion</p> <p>If confirmed, this hypothesis implies that economic development and the associated improvements in nutrition at puberty may be less beneficial among men than women; consistent with the widening sex differentials in life expectancy with economic development.</p
CD133-positive hepatocellular carcinoma in an area endemic for hepatitis B virus infection
<p>Abstract</p> <p>Background</p> <p>CD133 was detected in several types of cancers including hepatocellular carcinoma (HCC), which raised the possibility of stem cell origin in a subset of cancers. However, reappearance of embryonic markers in de-differentiated malignant cells was commonly observed. It remained to be elucidated whether CD133-positive HCCs were indeed of stem cell origin or they were just a group of poorly differentiated cells acquiring an embryonic marker. The aim of this study was to investigate the significance of CD133 expression in HCC in an area endemic for hepatitis B virus (HBV) infection to gain insights on this issue.</p> <p>Methods</p> <p>154 HCC patients receiving total removal of HCCs were included. 104 of them (67.5%) were positive for HBV infection. The cancerous and adjacent non-cancerous liver tissues were subjected for Western blot and immunohistochemistry analysis for CD133 expression. The data were correlated with clinical parameters, patient survivals, and p53 expression.</p> <p>Results</p> <p>Of 154 patients, 24 (15.6%) had CD133 expression in HCC. Univariate and multivariate logistic regression analysis revealed that CD133 expression was negatively correlated with the presence of hepatitis B surface antigen (HBsAg). The unadjusted and adjusted odds ratios were 0.337 (95%CI 0.126 - 0.890) and 0.084 (95%CI 0.010 - 0.707), respectively. On the other hand, p53 expression was positively associated with the presence of HBsAg in univariate analysis. The unadjusted odds ratio was 4.203 (95%CI 1.110 - 18.673). Survival analysis indicated that both CD133 and p53 expression in HCC predicted poor disease-free survival (P = 0.009 and 0.001, respectively), whereas only CD133 expression predicted poor overall survival (P = 0.001). Cox proportional hazard model showed that p53 and CD133 expression were two independent predictors for disease-free survival. The hazard ratios were 1.697 (95% CI 1.318 - 2.185) and 2.559 (95% CI 1.519 - 4.313), respectively (P < 0.001 for both).</p> <p>Conclusion</p> <p>In area where HBV infection accounts for the major attributive risk of HCC, CD133 expression in HCC was negatively associated with the presence of HBsAg, implicating a non-viral origin of CD133-positive HCC. Additionally, CD133 expression predicted poor disease-free survival independently of p53 expression, arguing for two distinguishable hepatocarcinogenesis pathways.</p
- …
